Readme
This model doesn't have a readme.
SDXL Fine-tune on cinematic shots
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run martintmv-git/sdxl-cinematic using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"martintmv-git/sdxl-cinematic:40224311d882f9cd120ea648c0bd11836b606b70b4dc215a7c6661235eefbaf2",
{
input: {
width: 1024,
height: 512,
prompt: "A medieval knight standing in a misty forest, with a castle visible in the distance, in the style of TOK, crisp, sharp, photorealistic, movie scene",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.8,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "cropped, worst quality, low quality, glitch, deformed, mutated, disfigured",
prompt_strength: 0.8,
num_inference_steps: 70
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run martintmv-git/sdxl-cinematic using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"martintmv-git/sdxl-cinematic:40224311d882f9cd120ea648c0bd11836b606b70b4dc215a7c6661235eefbaf2",
input={
"width": 1024,
"height": 512,
"prompt": "A medieval knight standing in a misty forest, with a castle visible in the distance, in the style of TOK, crisp, sharp, photorealistic, movie scene",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "cropped, worst quality, low quality, glitch, deformed, mutated, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 70
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run martintmv-git/sdxl-cinematic using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "martintmv-git/sdxl-cinematic:40224311d882f9cd120ea648c0bd11836b606b70b4dc215a7c6661235eefbaf2",
"input": {
"width": 1024,
"height": 512,
"prompt": "A medieval knight standing in a misty forest, with a castle visible in the distance, in the style of TOK, crisp, sharp, photorealistic, movie scene",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "cropped, worst quality, low quality, glitch, deformed, mutated, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 70
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-12-18T22:24:04.685958Z",
"created_at": "2023-12-18T22:23:49.147331Z",
"data_removed": false,
"error": null,
"id": "zh3rek3b464uvbicmr3jajgrnq",
"input": {
"width": 1024,
"height": 512,
"prompt": "A medieval knight standing in a misty forest, with a castle visible in the distance, in the style of TOK, crisp, sharp, photorealistic, movie scene",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "cropped, worst quality, low quality, glitch, deformed, mutated, disfigured",
"prompt_strength": 0.8,
"num_inference_steps": 70
},
"logs": "Using seed: 47266\nEnsuring enough disk space...\nFree disk space: 3213668261888\nDownloading weights: https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar\n2023-12-18T22:23:53Z | INFO | [ Initiating ] dest=/src/weights-cache/ff016a5a915406b1 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar\n2023-12-18T22:23:53Z | INFO | [ Complete ] dest=/src/weights-cache/ff016a5a915406b1 size=\"186 MB\" total_elapsed=0.500s url=https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar\nb''\nDownloaded weights in 0.6219019889831543 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A medieval knight standing in a misty forest, with a castle visible in the distance, in the style of <s0><s1>, crisp, sharp, photorealistic, movie scene\ntxt2img mode\n 0%| | 0/55 [00:00<?, ?it/s]\n 2%|▏ | 1/55 [00:00<00:10, 5.39it/s]\n 4%|▎ | 2/55 [00:00<00:08, 6.39it/s]\n 5%|▌ | 3/55 [00:00<00:07, 6.78it/s]\n 7%|▋ | 4/55 [00:00<00:07, 6.99it/s]\n 9%|▉ | 5/55 [00:00<00:07, 7.11it/s]\n 11%|█ | 6/55 [00:00<00:06, 7.18it/s]\n 13%|█▎ | 7/55 [00:01<00:06, 7.22it/s]\n 15%|█▍ | 8/55 [00:01<00:06, 7.24it/s]\n 16%|█▋ | 9/55 [00:01<00:06, 7.27it/s]\n 18%|█▊ | 10/55 [00:01<00:06, 7.28it/s]\n 20%|██ | 11/55 [00:01<00:06, 7.29it/s]\n 22%|██▏ | 12/55 [00:01<00:05, 7.30it/s]\n 24%|██▎ | 13/55 [00:01<00:05, 7.29it/s]\n 25%|██▌ | 14/55 [00:01<00:05, 7.30it/s]\n 27%|██▋ | 15/55 [00:02<00:05, 7.29it/s]\n 29%|██▉ | 16/55 [00:02<00:05, 7.30it/s]\n 31%|███ | 17/55 [00:02<00:05, 7.30it/s]\n 33%|███▎ | 18/55 [00:02<00:05, 7.30it/s]\n 35%|███▍ | 19/55 [00:02<00:04, 7.29it/s]\n 36%|███▋ | 20/55 [00:02<00:04, 7.29it/s]\n 38%|███▊ | 21/55 [00:02<00:04, 7.28it/s]\n 40%|████ | 22/55 [00:03<00:04, 7.28it/s]\n 42%|████▏ | 23/55 [00:03<00:04, 7.27it/s]\n 44%|████▎ | 24/55 [00:03<00:04, 7.28it/s]\n 45%|████▌ | 25/55 [00:03<00:04, 7.28it/s]\n 47%|████▋ | 26/55 [00:03<00:03, 7.28it/s]\n 49%|████▉ | 27/55 [00:03<00:03, 7.29it/s]\n 51%|█████ | 28/55 [00:03<00:03, 7.28it/s]\n 53%|█████▎ | 29/55 [00:04<00:03, 7.27it/s]\n 55%|█████▍ | 30/55 [00:04<00:03, 7.27it/s]\n 56%|█████▋ | 31/55 [00:04<00:03, 7.27it/s]\n 58%|█████▊ | 32/55 [00:04<00:03, 7.27it/s]\n 60%|██████ | 33/55 [00:04<00:03, 7.27it/s]\n 62%|██████▏ | 34/55 [00:04<00:02, 7.28it/s]\n 64%|██████▎ | 35/55 [00:04<00:02, 7.28it/s]\n 65%|██████▌ | 36/55 [00:04<00:02, 7.28it/s]\n 67%|██████▋ | 37/55 [00:05<00:02, 7.27it/s]\n 69%|██████▉ | 38/55 [00:05<00:02, 7.26it/s]\n 71%|███████ | 39/55 [00:05<00:02, 7.27it/s]\n 73%|███████▎ | 40/55 [00:05<00:02, 7.27it/s]\n 75%|███████▍ | 41/55 [00:05<00:01, 7.27it/s]\n 76%|███████▋ | 42/55 [00:05<00:01, 7.28it/s]\n 78%|███████▊ | 43/55 [00:05<00:01, 7.27it/s]\n 80%|████████ | 44/55 [00:06<00:01, 7.27it/s]\n 82%|████████▏ | 45/55 [00:06<00:01, 7.26it/s]\n 84%|████████▎ | 46/55 [00:06<00:01, 7.26it/s]\n 85%|████████▌ | 47/55 [00:06<00:01, 7.26it/s]\n 87%|████████▋ | 48/55 [00:06<00:00, 7.26it/s]\n 89%|████████▉ | 49/55 [00:06<00:00, 7.27it/s]\n 91%|█████████ | 50/55 [00:06<00:00, 7.27it/s]\n 93%|█████████▎| 51/55 [00:07<00:00, 7.27it/s]\n 95%|█████████▍| 52/55 [00:07<00:00, 7.27it/s]\n 96%|█████████▋| 53/55 [00:07<00:00, 7.26it/s]\n 98%|█████████▊| 54/55 [00:07<00:00, 7.26it/s]\n100%|██████████| 55/55 [00:07<00:00, 7.26it/s]\n100%|██████████| 55/55 [00:07<00:00, 7.23it/s]\n 0%| | 0/15 [00:00<?, ?it/s]\n 7%|▋ | 1/15 [00:00<00:01, 7.41it/s]\n 13%|█▎ | 2/15 [00:00<00:01, 8.07it/s]\n 20%|██ | 3/15 [00:00<00:01, 8.30it/s]\n 27%|██▋ | 4/15 [00:00<00:01, 8.41it/s]\n 33%|███▎ | 5/15 [00:00<00:01, 8.48it/s]\n 40%|████ | 6/15 [00:00<00:01, 8.52it/s]\n 47%|████▋ | 7/15 [00:00<00:00, 8.55it/s]\n 53%|█████▎ | 8/15 [00:00<00:00, 8.55it/s]\n 60%|██████ | 9/15 [00:01<00:00, 8.54it/s]\n 67%|██████▋ | 10/15 [00:01<00:00, 8.55it/s]\n 73%|███████▎ | 11/15 [00:01<00:00, 8.55it/s]\n 80%|████████ | 12/15 [00:01<00:00, 8.55it/s]\n 87%|████████▋ | 13/15 [00:01<00:00, 8.56it/s]\n 93%|█████████▎| 14/15 [00:01<00:00, 8.58it/s]\n100%|██████████| 15/15 [00:01<00:00, 8.58it/s]\n100%|██████████| 15/15 [00:01<00:00, 8.49it/s]",
"metrics": {
"predict_time": 11.489998,
"total_time": 15.538627
},
"output": [
"https://replicate.delivery/pbxt/jVFMVKiPFSKeOafqhfsbQudz0UKQEKHewPtNE1sTwm8TIecQC/out-0.png"
],
"started_at": "2023-12-18T22:23:53.195960Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/zh3rek3b464uvbicmr3jajgrnq",
"cancel": "https://api.replicate.com/v1/predictions/zh3rek3b464uvbicmr3jajgrnq/cancel"
},
"version": "40224311d882f9cd120ea648c0bd11836b606b70b4dc215a7c6661235eefbaf2"
}
Using seed: 47266
Ensuring enough disk space...
Free disk space: 3213668261888
Downloading weights: https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar
2023-12-18T22:23:53Z | INFO | [ Initiating ] dest=/src/weights-cache/ff016a5a915406b1 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar
2023-12-18T22:23:53Z | INFO | [ Complete ] dest=/src/weights-cache/ff016a5a915406b1 size="186 MB" total_elapsed=0.500s url=https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar
b''
Downloaded weights in 0.6219019889831543 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A medieval knight standing in a misty forest, with a castle visible in the distance, in the style of <s0><s1>, crisp, sharp, photorealistic, movie scene
txt2img mode
0%| | 0/55 [00:00<?, ?it/s]
2%|▏ | 1/55 [00:00<00:10, 5.39it/s]
4%|▎ | 2/55 [00:00<00:08, 6.39it/s]
5%|▌ | 3/55 [00:00<00:07, 6.78it/s]
7%|▋ | 4/55 [00:00<00:07, 6.99it/s]
9%|▉ | 5/55 [00:00<00:07, 7.11it/s]
11%|█ | 6/55 [00:00<00:06, 7.18it/s]
13%|█▎ | 7/55 [00:01<00:06, 7.22it/s]
15%|█▍ | 8/55 [00:01<00:06, 7.24it/s]
16%|█▋ | 9/55 [00:01<00:06, 7.27it/s]
18%|█▊ | 10/55 [00:01<00:06, 7.28it/s]
20%|██ | 11/55 [00:01<00:06, 7.29it/s]
22%|██▏ | 12/55 [00:01<00:05, 7.30it/s]
24%|██▎ | 13/55 [00:01<00:05, 7.29it/s]
25%|██▌ | 14/55 [00:01<00:05, 7.30it/s]
27%|██▋ | 15/55 [00:02<00:05, 7.29it/s]
29%|██▉ | 16/55 [00:02<00:05, 7.30it/s]
31%|███ | 17/55 [00:02<00:05, 7.30it/s]
33%|███▎ | 18/55 [00:02<00:05, 7.30it/s]
35%|███▍ | 19/55 [00:02<00:04, 7.29it/s]
36%|███▋ | 20/55 [00:02<00:04, 7.29it/s]
38%|███▊ | 21/55 [00:02<00:04, 7.28it/s]
40%|████ | 22/55 [00:03<00:04, 7.28it/s]
42%|████▏ | 23/55 [00:03<00:04, 7.27it/s]
44%|████▎ | 24/55 [00:03<00:04, 7.28it/s]
45%|████▌ | 25/55 [00:03<00:04, 7.28it/s]
47%|████▋ | 26/55 [00:03<00:03, 7.28it/s]
49%|████▉ | 27/55 [00:03<00:03, 7.29it/s]
51%|█████ | 28/55 [00:03<00:03, 7.28it/s]
53%|█████▎ | 29/55 [00:04<00:03, 7.27it/s]
55%|█████▍ | 30/55 [00:04<00:03, 7.27it/s]
56%|█████▋ | 31/55 [00:04<00:03, 7.27it/s]
58%|█████▊ | 32/55 [00:04<00:03, 7.27it/s]
60%|██████ | 33/55 [00:04<00:03, 7.27it/s]
62%|██████▏ | 34/55 [00:04<00:02, 7.28it/s]
64%|██████▎ | 35/55 [00:04<00:02, 7.28it/s]
65%|██████▌ | 36/55 [00:04<00:02, 7.28it/s]
67%|██████▋ | 37/55 [00:05<00:02, 7.27it/s]
69%|██████▉ | 38/55 [00:05<00:02, 7.26it/s]
71%|███████ | 39/55 [00:05<00:02, 7.27it/s]
73%|███████▎ | 40/55 [00:05<00:02, 7.27it/s]
75%|███████▍ | 41/55 [00:05<00:01, 7.27it/s]
76%|███████▋ | 42/55 [00:05<00:01, 7.28it/s]
78%|███████▊ | 43/55 [00:05<00:01, 7.27it/s]
80%|████████ | 44/55 [00:06<00:01, 7.27it/s]
82%|████████▏ | 45/55 [00:06<00:01, 7.26it/s]
84%|████████▎ | 46/55 [00:06<00:01, 7.26it/s]
85%|████████▌ | 47/55 [00:06<00:01, 7.26it/s]
87%|████████▋ | 48/55 [00:06<00:00, 7.26it/s]
89%|████████▉ | 49/55 [00:06<00:00, 7.27it/s]
91%|█████████ | 50/55 [00:06<00:00, 7.27it/s]
93%|█████████▎| 51/55 [00:07<00:00, 7.27it/s]
95%|█████████▍| 52/55 [00:07<00:00, 7.27it/s]
96%|█████████▋| 53/55 [00:07<00:00, 7.26it/s]
98%|█████████▊| 54/55 [00:07<00:00, 7.26it/s]
100%|██████████| 55/55 [00:07<00:00, 7.26it/s]
100%|██████████| 55/55 [00:07<00:00, 7.23it/s]
0%| | 0/15 [00:00<?, ?it/s]
7%|▋ | 1/15 [00:00<00:01, 7.41it/s]
13%|█▎ | 2/15 [00:00<00:01, 8.07it/s]
20%|██ | 3/15 [00:00<00:01, 8.30it/s]
27%|██▋ | 4/15 [00:00<00:01, 8.41it/s]
33%|███▎ | 5/15 [00:00<00:01, 8.48it/s]
40%|████ | 6/15 [00:00<00:01, 8.52it/s]
47%|████▋ | 7/15 [00:00<00:00, 8.55it/s]
53%|█████▎ | 8/15 [00:00<00:00, 8.55it/s]
60%|██████ | 9/15 [00:01<00:00, 8.54it/s]
67%|██████▋ | 10/15 [00:01<00:00, 8.55it/s]
73%|███████▎ | 11/15 [00:01<00:00, 8.55it/s]
80%|████████ | 12/15 [00:01<00:00, 8.55it/s]
87%|████████▋ | 13/15 [00:01<00:00, 8.56it/s]
93%|█████████▎| 14/15 [00:01<00:00, 8.58it/s]
100%|██████████| 15/15 [00:01<00:00, 8.58it/s]
100%|██████████| 15/15 [00:01<00:00, 8.49it/s]
This model costs approximately $0.020 to run on Replicate, or 50 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 21 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 47266
Ensuring enough disk space...
Free disk space: 3213668261888
Downloading weights: https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar
2023-12-18T22:23:53Z | INFO | [ Initiating ] dest=/src/weights-cache/ff016a5a915406b1 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar
2023-12-18T22:23:53Z | INFO | [ Complete ] dest=/src/weights-cache/ff016a5a915406b1 size="186 MB" total_elapsed=0.500s url=https://replicate.delivery/pbxt/HfFr4HaeymgDTEUFvcGuiUsLXUYRmRQdQYe9RZnduvh2hNHkA/trained_model.tar
b''
Downloaded weights in 0.6219019889831543 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A medieval knight standing in a misty forest, with a castle visible in the distance, in the style of <s0><s1>, crisp, sharp, photorealistic, movie scene
txt2img mode
0%| | 0/55 [00:00<?, ?it/s]
2%|▏ | 1/55 [00:00<00:10, 5.39it/s]
4%|▎ | 2/55 [00:00<00:08, 6.39it/s]
5%|▌ | 3/55 [00:00<00:07, 6.78it/s]
7%|▋ | 4/55 [00:00<00:07, 6.99it/s]
9%|▉ | 5/55 [00:00<00:07, 7.11it/s]
11%|█ | 6/55 [00:00<00:06, 7.18it/s]
13%|█▎ | 7/55 [00:01<00:06, 7.22it/s]
15%|█▍ | 8/55 [00:01<00:06, 7.24it/s]
16%|█▋ | 9/55 [00:01<00:06, 7.27it/s]
18%|█▊ | 10/55 [00:01<00:06, 7.28it/s]
20%|██ | 11/55 [00:01<00:06, 7.29it/s]
22%|██▏ | 12/55 [00:01<00:05, 7.30it/s]
24%|██▎ | 13/55 [00:01<00:05, 7.29it/s]
25%|██▌ | 14/55 [00:01<00:05, 7.30it/s]
27%|██▋ | 15/55 [00:02<00:05, 7.29it/s]
29%|██▉ | 16/55 [00:02<00:05, 7.30it/s]
31%|███ | 17/55 [00:02<00:05, 7.30it/s]
33%|███▎ | 18/55 [00:02<00:05, 7.30it/s]
35%|███▍ | 19/55 [00:02<00:04, 7.29it/s]
36%|███▋ | 20/55 [00:02<00:04, 7.29it/s]
38%|███▊ | 21/55 [00:02<00:04, 7.28it/s]
40%|████ | 22/55 [00:03<00:04, 7.28it/s]
42%|████▏ | 23/55 [00:03<00:04, 7.27it/s]
44%|████▎ | 24/55 [00:03<00:04, 7.28it/s]
45%|████▌ | 25/55 [00:03<00:04, 7.28it/s]
47%|████▋ | 26/55 [00:03<00:03, 7.28it/s]
49%|████▉ | 27/55 [00:03<00:03, 7.29it/s]
51%|█████ | 28/55 [00:03<00:03, 7.28it/s]
53%|█████▎ | 29/55 [00:04<00:03, 7.27it/s]
55%|█████▍ | 30/55 [00:04<00:03, 7.27it/s]
56%|█████▋ | 31/55 [00:04<00:03, 7.27it/s]
58%|█████▊ | 32/55 [00:04<00:03, 7.27it/s]
60%|██████ | 33/55 [00:04<00:03, 7.27it/s]
62%|██████▏ | 34/55 [00:04<00:02, 7.28it/s]
64%|██████▎ | 35/55 [00:04<00:02, 7.28it/s]
65%|██████▌ | 36/55 [00:04<00:02, 7.28it/s]
67%|██████▋ | 37/55 [00:05<00:02, 7.27it/s]
69%|██████▉ | 38/55 [00:05<00:02, 7.26it/s]
71%|███████ | 39/55 [00:05<00:02, 7.27it/s]
73%|███████▎ | 40/55 [00:05<00:02, 7.27it/s]
75%|███████▍ | 41/55 [00:05<00:01, 7.27it/s]
76%|███████▋ | 42/55 [00:05<00:01, 7.28it/s]
78%|███████▊ | 43/55 [00:05<00:01, 7.27it/s]
80%|████████ | 44/55 [00:06<00:01, 7.27it/s]
82%|████████▏ | 45/55 [00:06<00:01, 7.26it/s]
84%|████████▎ | 46/55 [00:06<00:01, 7.26it/s]
85%|████████▌ | 47/55 [00:06<00:01, 7.26it/s]
87%|████████▋ | 48/55 [00:06<00:00, 7.26it/s]
89%|████████▉ | 49/55 [00:06<00:00, 7.27it/s]
91%|█████████ | 50/55 [00:06<00:00, 7.27it/s]
93%|█████████▎| 51/55 [00:07<00:00, 7.27it/s]
95%|█████████▍| 52/55 [00:07<00:00, 7.27it/s]
96%|█████████▋| 53/55 [00:07<00:00, 7.26it/s]
98%|█████████▊| 54/55 [00:07<00:00, 7.26it/s]
100%|██████████| 55/55 [00:07<00:00, 7.26it/s]
100%|██████████| 55/55 [00:07<00:00, 7.23it/s]
0%| | 0/15 [00:00<?, ?it/s]
7%|▋ | 1/15 [00:00<00:01, 7.41it/s]
13%|█▎ | 2/15 [00:00<00:01, 8.07it/s]
20%|██ | 3/15 [00:00<00:01, 8.30it/s]
27%|██▋ | 4/15 [00:00<00:01, 8.41it/s]
33%|███▎ | 5/15 [00:00<00:01, 8.48it/s]
40%|████ | 6/15 [00:00<00:01, 8.52it/s]
47%|████▋ | 7/15 [00:00<00:00, 8.55it/s]
53%|█████▎ | 8/15 [00:00<00:00, 8.55it/s]
60%|██████ | 9/15 [00:01<00:00, 8.54it/s]
67%|██████▋ | 10/15 [00:01<00:00, 8.55it/s]
73%|███████▎ | 11/15 [00:01<00:00, 8.55it/s]
80%|████████ | 12/15 [00:01<00:00, 8.55it/s]
87%|████████▋ | 13/15 [00:01<00:00, 8.56it/s]
93%|█████████▎| 14/15 [00:01<00:00, 8.58it/s]
100%|██████████| 15/15 [00:01<00:00, 8.58it/s]
100%|██████████| 15/15 [00:01<00:00, 8.49it/s]