myaiteam2 / antiquemetalcreator
Create cool looking gold metal things!
- Public
- 1.8K runs
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDmt4kar5fczedjmakyunreu7h4iStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, tree of life
- num_outputs
- 1
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, tree of life", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, tree of life", num_outputs: 1, guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, tree of life", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, tree of life", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:04:00.313054Z", "created_at": "2022-11-24T04:02:46.427077Z", "data_removed": false, "error": null, "id": "mt4kar5fczedjmakyunreu7h4i", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, tree of life", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 56006\nGlobal seed set to 56006\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:17, 2.85it/s]\n 4%|▍ | 2/50 [00:00<00:14, 3.36it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.56it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.66it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.69it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.72it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.76it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.78it/s]\n 18%|█▊ | 9/50 [00:02<00:10, 3.77it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.78it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.79it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.79it/s]\n 26%|██▌ | 13/50 [00:03<00:09, 3.78it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.78it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.78it/s]\n 32%|███▏ | 16/50 [00:04<00:08, 3.79it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.79it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.78it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.78it/s]\n 40%|████ | 20/50 [00:05<00:07, 3.78it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.78it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.77it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.76it/s]\n 48%|████▊ | 24/50 [00:06<00:06, 3.78it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.78it/s]\n 52%|█████▏ | 26/50 [00:06<00:06, 3.78it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.77it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.78it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.79it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.78it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.77it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.77it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.78it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.77it/s]\n 70%|███████ | 35/50 [00:09<00:03, 3.76it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.77it/s]\n 74%|███████▍ | 37/50 [00:09<00:03, 3.78it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.78it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.77it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.78it/s]\n 82%|████████▏ | 41/50 [00:10<00:02, 3.77it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.77it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.77it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.76it/s]\n 90%|█████████ | 45/50 [00:11<00:01, 3.76it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.77it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.76it/s]\n 96%|█████████▌| 48/50 [00:12<00:00, 3.76it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.76it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.75it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.75it/s]", "metrics": { "predict_time": 14.460954, "total_time": 73.885977 }, "output": [ "https://replicate.delivery/pbxt/6DyY0K0Apj75MRVrt8c9R83yp22uDsxyhseTYlVqGlwXeJDQA/out-0.png" ], "started_at": "2022-11-24T04:03:45.852100Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/mt4kar5fczedjmakyunreu7h4i", "cancel": "https://api.replicate.com/v1/predictions/mt4kar5fczedjmakyunreu7h4i/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 56006 Global seed set to 56006 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:17, 2.85it/s] 4%|▍ | 2/50 [00:00<00:14, 3.36it/s] 6%|▌ | 3/50 [00:00<00:13, 3.56it/s] 8%|▊ | 4/50 [00:01<00:12, 3.66it/s] 10%|█ | 5/50 [00:01<00:12, 3.69it/s] 12%|█▏ | 6/50 [00:01<00:11, 3.72it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.76it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.78it/s] 18%|█▊ | 9/50 [00:02<00:10, 3.77it/s] 20%|██ | 10/50 [00:02<00:10, 3.78it/s] 22%|██▏ | 11/50 [00:02<00:10, 3.79it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.79it/s] 26%|██▌ | 13/50 [00:03<00:09, 3.78it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.78it/s] 30%|███ | 15/50 [00:04<00:09, 3.78it/s] 32%|███▏ | 16/50 [00:04<00:08, 3.79it/s] 34%|███▍ | 17/50 [00:04<00:08, 3.79it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.78it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.78it/s] 40%|████ | 20/50 [00:05<00:07, 3.78it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.78it/s] 44%|████▍ | 22/50 [00:05<00:07, 3.77it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.76it/s] 48%|████▊ | 24/50 [00:06<00:06, 3.78it/s] 50%|█████ | 25/50 [00:06<00:06, 3.78it/s] 52%|█████▏ | 26/50 [00:06<00:06, 3.78it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.77it/s] 56%|█████▌ | 28/50 [00:07<00:05, 3.78it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.79it/s] 60%|██████ | 30/50 [00:08<00:05, 3.78it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.77it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.77it/s] 66%|██████▌ | 33/50 [00:08<00:04, 3.78it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.77it/s] 70%|███████ | 35/50 [00:09<00:03, 3.76it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.77it/s] 74%|███████▍ | 37/50 [00:09<00:03, 3.78it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.78it/s] 78%|███████▊ | 39/50 [00:10<00:02, 3.77it/s] 80%|████████ | 40/50 [00:10<00:02, 3.78it/s] 82%|████████▏ | 41/50 [00:10<00:02, 3.77it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.77it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.77it/s] 88%|████████▊ | 44/50 [00:11<00:01, 3.76it/s] 90%|█████████ | 45/50 [00:11<00:01, 3.76it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.77it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.76it/s] 96%|█████████▌| 48/50 [00:12<00:00, 3.76it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.76it/s] 100%|██████████| 50/50 [00:13<00:00, 3.75it/s] 100%|██████████| 50/50 [00:13<00:00, 3.75it/s]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDezekxxhvlngshhqusm24ftp5eqStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, tree of life
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, tree of life", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, tree of life", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, tree of life", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, tree of life", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:04:31.269691Z", "created_at": "2022-11-24T03:59:30.021358Z", "data_removed": false, "error": null, "id": "ezekxxhvlngshhqusm24ftp5eq", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, tree of life", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 25756\nGlobal seed set to 25756\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:06<04:55, 6.03s/it]\n 4%|▍ | 2/50 [00:06<02:26, 3.04s/it]\n 6%|▌ | 3/50 [00:07<01:38, 2.09s/it]\n 8%|▊ | 4/50 [00:08<01:15, 1.64s/it]\n 10%|█ | 5/50 [00:09<01:02, 1.40s/it]\n 12%|█▏ | 6/50 [00:10<00:55, 1.25s/it]\n 14%|█▍ | 7/50 [00:11<00:49, 1.16s/it]\n 16%|█▌ | 8/50 [00:12<00:46, 1.10s/it]\n 18%|█▊ | 9/50 [00:13<00:43, 1.06s/it]\n 20%|██ | 10/50 [00:14<00:41, 1.04s/it]\n 22%|██▏ | 11/50 [00:15<00:39, 1.02s/it]\n 24%|██▍ | 12/50 [00:16<00:38, 1.01s/it]\n 26%|██▌ | 13/50 [00:17<00:36, 1.00it/s]\n 28%|██▊ | 14/50 [00:18<00:35, 1.01it/s]\n 30%|███ | 15/50 [00:19<00:34, 1.02it/s]\n 32%|███▏ | 16/50 [00:20<00:33, 1.02it/s]\n 34%|███▍ | 17/50 [00:21<00:32, 1.02it/s]\n 36%|███▌ | 18/50 [00:22<00:31, 1.02it/s]\n 38%|███▊ | 19/50 [00:23<00:30, 1.02it/s]\n 40%|████ | 20/50 [00:24<00:29, 1.02it/s]\n 42%|████▏ | 21/50 [00:25<00:28, 1.02it/s]\n 44%|████▍ | 22/50 [00:26<00:27, 1.02it/s]\n 46%|████▌ | 23/50 [00:27<00:26, 1.01it/s]\n 48%|████▊ | 24/50 [00:28<00:25, 1.01it/s]\n 50%|█████ | 25/50 [00:29<00:24, 1.01it/s]\n 52%|█████▏ | 26/50 [00:30<00:23, 1.01it/s]\n 54%|█████▍ | 27/50 [00:31<00:22, 1.01it/s]\n 56%|█████▌ | 28/50 [00:32<00:21, 1.01it/s]\n 58%|█████▊ | 29/50 [00:33<00:20, 1.00it/s]\n 60%|██████ | 30/50 [00:34<00:19, 1.00it/s]\n 62%|██████▏ | 31/50 [00:35<00:19, 1.00s/it]\n 64%|██████▍ | 32/50 [00:36<00:18, 1.00s/it]\n 66%|██████▌ | 33/50 [00:37<00:17, 1.00s/it]\n 68%|██████▊ | 34/50 [00:38<00:16, 1.01s/it]\n 70%|███████ | 35/50 [00:39<00:15, 1.01s/it]\n 72%|███████▏ | 36/50 [00:40<00:14, 1.01s/it]\n 74%|███████▍ | 37/50 [00:41<00:13, 1.01s/it]\n 76%|███████▌ | 38/50 [00:42<00:12, 1.01s/it]\n 78%|███████▊ | 39/50 [00:43<00:11, 1.01s/it]\n 80%|████████ | 40/50 [00:44<00:10, 1.01s/it]\n 82%|████████▏ | 41/50 [00:45<00:09, 1.02s/it]\n 84%|████████▍ | 42/50 [00:46<00:08, 1.02s/it]\n 86%|████████▌ | 43/50 [00:47<00:07, 1.02s/it]\n 88%|████████▊ | 44/50 [00:48<00:06, 1.03s/it]\n 90%|█████████ | 45/50 [00:49<00:05, 1.03s/it]\n 92%|█████████▏| 46/50 [00:50<00:04, 1.03s/it]\n 94%|█████████▍| 47/50 [00:51<00:03, 1.03s/it]\n 96%|█████████▌| 48/50 [00:52<00:02, 1.03s/it]\n 98%|█████████▊| 49/50 [00:53<00:01, 1.03s/it]\n100%|██████████| 50/50 [00:54<00:00, 1.03s/it]\n100%|██████████| 50/50 [00:54<00:00, 1.10s/it]", "metrics": { "predict_time": 78.086437, "total_time": 301.248333 }, "output": [ "https://replicate.delivery/pbxt/DeU58ciIRkQoSymh8pbGW72pekGBKiEa4Cnwyf15ztnZ6TGgA/out-0.png", "https://replicate.delivery/pbxt/DFRaUgffG2kHnEItrLn8Ob8iKhuhCp9ccRfwBEI5Yqf30nMAB/out-1.png", "https://replicate.delivery/pbxt/MK2F32Yofx3XAyT87aZoQUh76mEyfbOojl9tdjLJuNbN9JDQA/out-2.png", "https://replicate.delivery/pbxt/gqoxuSeRVrxtD6GQpu4EYRKbdfZ18rtw2GwQ6iPCTC7O9JDQA/out-3.png" ], "started_at": "2022-11-24T04:03:13.183254Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ezekxxhvlngshhqusm24ftp5eq", "cancel": "https://api.replicate.com/v1/predictions/ezekxxhvlngshhqusm24ftp5eq/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 25756 Global seed set to 25756 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:06<04:55, 6.03s/it] 4%|▍ | 2/50 [00:06<02:26, 3.04s/it] 6%|▌ | 3/50 [00:07<01:38, 2.09s/it] 8%|▊ | 4/50 [00:08<01:15, 1.64s/it] 10%|█ | 5/50 [00:09<01:02, 1.40s/it] 12%|█▏ | 6/50 [00:10<00:55, 1.25s/it] 14%|█▍ | 7/50 [00:11<00:49, 1.16s/it] 16%|█▌ | 8/50 [00:12<00:46, 1.10s/it] 18%|█▊ | 9/50 [00:13<00:43, 1.06s/it] 20%|██ | 10/50 [00:14<00:41, 1.04s/it] 22%|██▏ | 11/50 [00:15<00:39, 1.02s/it] 24%|██▍ | 12/50 [00:16<00:38, 1.01s/it] 26%|██▌ | 13/50 [00:17<00:36, 1.00it/s] 28%|██▊ | 14/50 [00:18<00:35, 1.01it/s] 30%|███ | 15/50 [00:19<00:34, 1.02it/s] 32%|███▏ | 16/50 [00:20<00:33, 1.02it/s] 34%|███▍ | 17/50 [00:21<00:32, 1.02it/s] 36%|███▌ | 18/50 [00:22<00:31, 1.02it/s] 38%|███▊ | 19/50 [00:23<00:30, 1.02it/s] 40%|████ | 20/50 [00:24<00:29, 1.02it/s] 42%|████▏ | 21/50 [00:25<00:28, 1.02it/s] 44%|████▍ | 22/50 [00:26<00:27, 1.02it/s] 46%|████▌ | 23/50 [00:27<00:26, 1.01it/s] 48%|████▊ | 24/50 [00:28<00:25, 1.01it/s] 50%|█████ | 25/50 [00:29<00:24, 1.01it/s] 52%|█████▏ | 26/50 [00:30<00:23, 1.01it/s] 54%|█████▍ | 27/50 [00:31<00:22, 1.01it/s] 56%|█████▌ | 28/50 [00:32<00:21, 1.01it/s] 58%|█████▊ | 29/50 [00:33<00:20, 1.00it/s] 60%|██████ | 30/50 [00:34<00:19, 1.00it/s] 62%|██████▏ | 31/50 [00:35<00:19, 1.00s/it] 64%|██████▍ | 32/50 [00:36<00:18, 1.00s/it] 66%|██████▌ | 33/50 [00:37<00:17, 1.00s/it] 68%|██████▊ | 34/50 [00:38<00:16, 1.01s/it] 70%|███████ | 35/50 [00:39<00:15, 1.01s/it] 72%|███████▏ | 36/50 [00:40<00:14, 1.01s/it] 74%|███████▍ | 37/50 [00:41<00:13, 1.01s/it] 76%|███████▌ | 38/50 [00:42<00:12, 1.01s/it] 78%|███████▊ | 39/50 [00:43<00:11, 1.01s/it] 80%|████████ | 40/50 [00:44<00:10, 1.01s/it] 82%|████████▏ | 41/50 [00:45<00:09, 1.02s/it] 84%|████████▍ | 42/50 [00:46<00:08, 1.02s/it] 86%|████████▌ | 43/50 [00:47<00:07, 1.02s/it] 88%|████████▊ | 44/50 [00:48<00:06, 1.03s/it] 90%|█████████ | 45/50 [00:49<00:05, 1.03s/it] 92%|█████████▏| 46/50 [00:50<00:04, 1.03s/it] 94%|█████████▍| 47/50 [00:51<00:03, 1.03s/it] 96%|█████████▌| 48/50 [00:52<00:02, 1.03s/it] 98%|█████████▊| 49/50 [00:53<00:01, 1.03s/it] 100%|██████████| 50/50 [00:54<00:00, 1.03s/it] 100%|██████████| 50/50 [00:54<00:00, 1.10s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDy6c6rm5uirditmdyym6e2hhybqStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, fish
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, fish", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, fish", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, fish", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, fish", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:05:36.386989Z", "created_at": "2022-11-24T04:04:37.679501Z", "data_removed": false, "error": null, "id": "y6c6rm5uirditmdyym6e2hhybq", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, fish", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 64986\nGlobal seed set to 64986\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:52, 1.07s/it]\n 4%|▍ | 2/50 [00:02<00:50, 1.05s/it]\n 6%|▌ | 3/50 [00:03<00:49, 1.04s/it]\n 8%|▊ | 4/50 [00:04<00:47, 1.04s/it]\n 10%|█ | 5/50 [00:05<00:46, 1.04s/it]\n 12%|█▏ | 6/50 [00:06<00:45, 1.04s/it]\n 14%|█▍ | 7/50 [00:07<00:45, 1.05s/it]\n 16%|█▌ | 8/50 [00:08<00:44, 1.05s/it]\n 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it]\n 20%|██ | 10/50 [00:10<00:42, 1.05s/it]\n 22%|██▏ | 11/50 [00:11<00:41, 1.06s/it]\n 24%|██▍ | 12/50 [00:12<00:40, 1.06s/it]\n 26%|██▌ | 13/50 [00:13<00:39, 1.07s/it]\n 28%|██▊ | 14/50 [00:14<00:38, 1.07s/it]\n 30%|███ | 15/50 [00:15<00:37, 1.07s/it]\n 32%|███▏ | 16/50 [00:16<00:36, 1.07s/it]\n 34%|███▍ | 17/50 [00:18<00:35, 1.08s/it]\n 36%|███▌ | 18/50 [00:19<00:34, 1.08s/it]\n 38%|███▊ | 19/50 [00:20<00:33, 1.08s/it]\n 40%|████ | 20/50 [00:21<00:32, 1.09s/it]\n 42%|████▏ | 21/50 [00:22<00:31, 1.09s/it]\n 44%|████▍ | 22/50 [00:23<00:30, 1.09s/it]\n 46%|████▌ | 23/50 [00:24<00:29, 1.09s/it]\n 48%|████▊ | 24/50 [00:25<00:28, 1.09s/it]\n 50%|█████ | 25/50 [00:26<00:27, 1.10s/it]\n 52%|█████▏ | 26/50 [00:27<00:26, 1.10s/it]\n 54%|█████▍ | 27/50 [00:28<00:25, 1.10s/it]\n 56%|█████▌ | 28/50 [00:30<00:24, 1.11s/it]\n 58%|█████▊ | 29/50 [00:31<00:23, 1.11s/it]\n 60%|██████ | 30/50 [00:32<00:22, 1.11s/it]\n 62%|██████▏ | 31/50 [00:33<00:21, 1.11s/it]\n 64%|██████▍ | 32/50 [00:34<00:20, 1.11s/it]\n 66%|██████▌ | 33/50 [00:35<00:18, 1.11s/it]\n 68%|██████▊ | 34/50 [00:36<00:17, 1.11s/it]\n 70%|███████ | 35/50 [00:37<00:16, 1.11s/it]\n 72%|███████▏ | 36/50 [00:38<00:15, 1.10s/it]\n 74%|███████▍ | 37/50 [00:40<00:14, 1.10s/it]\n 76%|███████▌ | 38/50 [00:41<00:13, 1.10s/it]\n 78%|███████▊ | 39/50 [00:42<00:12, 1.09s/it]\n 80%|████████ | 40/50 [00:43<00:10, 1.09s/it]\n 82%|████████▏ | 41/50 [00:44<00:09, 1.09s/it]\n 84%|████████▍ | 42/50 [00:45<00:08, 1.09s/it]\n 86%|████████▌ | 43/50 [00:46<00:07, 1.08s/it]\n 88%|████████▊ | 44/50 [00:47<00:06, 1.08s/it]\n 90%|█████████ | 45/50 [00:48<00:05, 1.08s/it]\n 92%|█████████▏| 46/50 [00:49<00:04, 1.08s/it]\n 94%|█████████▍| 47/50 [00:50<00:03, 1.08s/it]\n 96%|█████████▌| 48/50 [00:51<00:02, 1.07s/it]\n 98%|█████████▊| 49/50 [00:53<00:01, 1.07s/it]\n100%|██████████| 50/50 [00:54<00:00, 1.07s/it]\n100%|██████████| 50/50 [00:54<00:00, 1.08s/it]", "metrics": { "predict_time": 58.673748, "total_time": 58.707488 }, "output": [ "https://replicate.delivery/pbxt/lVYeeWoN69tsKE7HYwfUffzt6Ok6dTBQzaKq1QpVRDYuxPZAC/out-0.png", "https://replicate.delivery/pbxt/mSXKOHfsLPxzGSHA6hAcuisQbX5vwIkeTFilH1eCBUrd8TGgA/out-1.png", "https://replicate.delivery/pbxt/eVtfKBtlgOl29ElbDcMXpelvEYOz4WegJUJrxkIsAR7exPZAC/out-2.png", "https://replicate.delivery/pbxt/mdf8Mcdg342kK6THC3uR4fhMYyhChkeeeqjI3FIzcPB6xPZAC/out-3.png" ], "started_at": "2022-11-24T04:04:37.713241Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/y6c6rm5uirditmdyym6e2hhybq", "cancel": "https://api.replicate.com/v1/predictions/y6c6rm5uirditmdyym6e2hhybq/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 64986 Global seed set to 64986 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:52, 1.07s/it] 4%|▍ | 2/50 [00:02<00:50, 1.05s/it] 6%|▌ | 3/50 [00:03<00:49, 1.04s/it] 8%|▊ | 4/50 [00:04<00:47, 1.04s/it] 10%|█ | 5/50 [00:05<00:46, 1.04s/it] 12%|█▏ | 6/50 [00:06<00:45, 1.04s/it] 14%|█▍ | 7/50 [00:07<00:45, 1.05s/it] 16%|█▌ | 8/50 [00:08<00:44, 1.05s/it] 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it] 20%|██ | 10/50 [00:10<00:42, 1.05s/it] 22%|██▏ | 11/50 [00:11<00:41, 1.06s/it] 24%|██▍ | 12/50 [00:12<00:40, 1.06s/it] 26%|██▌ | 13/50 [00:13<00:39, 1.07s/it] 28%|██▊ | 14/50 [00:14<00:38, 1.07s/it] 30%|███ | 15/50 [00:15<00:37, 1.07s/it] 32%|███▏ | 16/50 [00:16<00:36, 1.07s/it] 34%|███▍ | 17/50 [00:18<00:35, 1.08s/it] 36%|███▌ | 18/50 [00:19<00:34, 1.08s/it] 38%|███▊ | 19/50 [00:20<00:33, 1.08s/it] 40%|████ | 20/50 [00:21<00:32, 1.09s/it] 42%|████▏ | 21/50 [00:22<00:31, 1.09s/it] 44%|████▍ | 22/50 [00:23<00:30, 1.09s/it] 46%|████▌ | 23/50 [00:24<00:29, 1.09s/it] 48%|████▊ | 24/50 [00:25<00:28, 1.09s/it] 50%|█████ | 25/50 [00:26<00:27, 1.10s/it] 52%|█████▏ | 26/50 [00:27<00:26, 1.10s/it] 54%|█████▍ | 27/50 [00:28<00:25, 1.10s/it] 56%|█████▌ | 28/50 [00:30<00:24, 1.11s/it] 58%|█████▊ | 29/50 [00:31<00:23, 1.11s/it] 60%|██████ | 30/50 [00:32<00:22, 1.11s/it] 62%|██████▏ | 31/50 [00:33<00:21, 1.11s/it] 64%|██████▍ | 32/50 [00:34<00:20, 1.11s/it] 66%|██████▌ | 33/50 [00:35<00:18, 1.11s/it] 68%|██████▊ | 34/50 [00:36<00:17, 1.11s/it] 70%|███████ | 35/50 [00:37<00:16, 1.11s/it] 72%|███████▏ | 36/50 [00:38<00:15, 1.10s/it] 74%|███████▍ | 37/50 [00:40<00:14, 1.10s/it] 76%|███████▌ | 38/50 [00:41<00:13, 1.10s/it] 78%|███████▊ | 39/50 [00:42<00:12, 1.09s/it] 80%|████████ | 40/50 [00:43<00:10, 1.09s/it] 82%|████████▏ | 41/50 [00:44<00:09, 1.09s/it] 84%|████████▍ | 42/50 [00:45<00:08, 1.09s/it] 86%|████████▌ | 43/50 [00:46<00:07, 1.08s/it] 88%|████████▊ | 44/50 [00:47<00:06, 1.08s/it] 90%|█████████ | 45/50 [00:48<00:05, 1.08s/it] 92%|█████████▏| 46/50 [00:49<00:04, 1.08s/it] 94%|█████████▍| 47/50 [00:50<00:03, 1.08s/it] 96%|█████████▌| 48/50 [00:51<00:02, 1.07s/it] 98%|█████████▊| 49/50 [00:53<00:01, 1.07s/it] 100%|██████████| 50/50 [00:54<00:00, 1.07s/it] 100%|██████████| 50/50 [00:54<00:00, 1.08s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587Input
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, chicken
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, chicken", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, chicken", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, chicken", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, chicken", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:06:34.448290Z", "created_at": "2022-11-24T04:05:34.860005Z", "data_removed": false, "error": null, "id": "vr7qp7savza3bairmeyzsiauoy", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, chicken", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 12234\nGlobal seed set to 12234\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:52, 1.07s/it]\n 4%|▍ | 2/50 [00:02<00:50, 1.05s/it]\n 6%|▌ | 3/50 [00:03<00:49, 1.06s/it]\n 8%|▊ | 4/50 [00:04<00:48, 1.05s/it]\n 10%|█ | 5/50 [00:05<00:47, 1.05s/it]\n 12%|█▏ | 6/50 [00:06<00:46, 1.05s/it]\n 14%|█▍ | 7/50 [00:07<00:45, 1.05s/it]\n 16%|█▌ | 8/50 [00:08<00:44, 1.05s/it]\n 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it]\n 20%|██ | 10/50 [00:10<00:42, 1.05s/it]\n 22%|██▏ | 11/50 [00:11<00:41, 1.05s/it]\n 24%|██▍ | 12/50 [00:12<00:39, 1.05s/it]\n 26%|██▌ | 13/50 [00:13<00:38, 1.05s/it]\n 28%|██▊ | 14/50 [00:14<00:37, 1.05s/it]\n 30%|███ | 15/50 [00:15<00:36, 1.05s/it]\n 32%|███▏ | 16/50 [00:16<00:35, 1.06s/it]\n 34%|███▍ | 17/50 [00:17<00:34, 1.06s/it]\n 36%|███▌ | 18/50 [00:18<00:33, 1.06s/it]\n 38%|███▊ | 19/50 [00:20<00:32, 1.06s/it]\n 40%|████ | 20/50 [00:21<00:31, 1.06s/it]\n 42%|████▏ | 21/50 [00:22<00:30, 1.06s/it]\n 44%|████▍ | 22/50 [00:23<00:29, 1.06s/it]\n 46%|████▌ | 23/50 [00:24<00:28, 1.06s/it]\n 48%|████▊ | 24/50 [00:25<00:27, 1.06s/it]\n 50%|█████ | 25/50 [00:26<00:26, 1.06s/it]\n 52%|█████▏ | 26/50 [00:27<00:25, 1.07s/it]\n 54%|█████▍ | 27/50 [00:28<00:24, 1.07s/it]\n 56%|█████▌ | 28/50 [00:29<00:23, 1.07s/it]\n 58%|█████▊ | 29/50 [00:30<00:22, 1.07s/it]\n 60%|██████ | 30/50 [00:31<00:21, 1.07s/it]\n 62%|██████▏ | 31/50 [00:32<00:20, 1.07s/it]\n 64%|██████▍ | 32/50 [00:33<00:19, 1.07s/it]\n 66%|██████▌ | 33/50 [00:35<00:18, 1.08s/it]\n 68%|██████▊ | 34/50 [00:36<00:17, 1.08s/it]\n 70%|███████ | 35/50 [00:37<00:16, 1.08s/it]\n 72%|███████▏ | 36/50 [00:38<00:15, 1.08s/it]\n 74%|███████▍ | 37/50 [00:39<00:13, 1.07s/it]\n 76%|███████▌ | 38/50 [00:40<00:12, 1.07s/it]\n 78%|███████▊ | 39/50 [00:41<00:11, 1.08s/it]\n 80%|████████ | 40/50 [00:42<00:10, 1.08s/it]\n 82%|████████▏ | 41/50 [00:43<00:09, 1.08s/it]\n 84%|████████▍ | 42/50 [00:44<00:08, 1.08s/it]\n 86%|████████▌ | 43/50 [00:45<00:07, 1.08s/it]\n 88%|████████▊ | 44/50 [00:46<00:06, 1.08s/it]\n 90%|█████████ | 45/50 [00:47<00:05, 1.08s/it]\n 92%|█████████▏| 46/50 [00:49<00:04, 1.08s/it]\n 94%|█████████▍| 47/50 [00:50<00:03, 1.08s/it]\n 96%|█████████▌| 48/50 [00:51<00:02, 1.08s/it]\n 98%|█████████▊| 49/50 [00:52<00:01, 1.08s/it]\n100%|██████████| 50/50 [00:53<00:00, 1.08s/it]\n100%|██████████| 50/50 [00:53<00:00, 1.07s/it]", "metrics": { "predict_time": 57.966027, "total_time": 59.588285 }, "output": [ "https://replicate.delivery/pbxt/fJeZzevJ6WR7QJvdit5JbJKTOUg6nDdsYRzXRzEfQOyd8nMAB/out-0.png", "https://replicate.delivery/pbxt/dftlBhIJoHSfwE7vo6uL9mnvpXV34MYe4uub7BsmwhFQenMAB/out-1.png", "https://replicate.delivery/pbxt/3cqGzrT1CFLtDZq6tRw9BkUyQWfR1gJLEvBRpkcnnaxkfJDQA/out-2.png", "https://replicate.delivery/pbxt/r2Hwxo0SczK1P5LhmbIoGAOCGxKadSuFwjeEyu3F1SgkfJDQA/out-3.png" ], "started_at": "2022-11-24T04:05:36.482263Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vr7qp7savza3bairmeyzsiauoy", "cancel": "https://api.replicate.com/v1/predictions/vr7qp7savza3bairmeyzsiauoy/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 12234 Global seed set to 12234 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:52, 1.07s/it] 4%|▍ | 2/50 [00:02<00:50, 1.05s/it] 6%|▌ | 3/50 [00:03<00:49, 1.06s/it] 8%|▊ | 4/50 [00:04<00:48, 1.05s/it] 10%|█ | 5/50 [00:05<00:47, 1.05s/it] 12%|█▏ | 6/50 [00:06<00:46, 1.05s/it] 14%|█▍ | 7/50 [00:07<00:45, 1.05s/it] 16%|█▌ | 8/50 [00:08<00:44, 1.05s/it] 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it] 20%|██ | 10/50 [00:10<00:42, 1.05s/it] 22%|██▏ | 11/50 [00:11<00:41, 1.05s/it] 24%|██▍ | 12/50 [00:12<00:39, 1.05s/it] 26%|██▌ | 13/50 [00:13<00:38, 1.05s/it] 28%|██▊ | 14/50 [00:14<00:37, 1.05s/it] 30%|███ | 15/50 [00:15<00:36, 1.05s/it] 32%|███▏ | 16/50 [00:16<00:35, 1.06s/it] 34%|███▍ | 17/50 [00:17<00:34, 1.06s/it] 36%|███▌ | 18/50 [00:18<00:33, 1.06s/it] 38%|███▊ | 19/50 [00:20<00:32, 1.06s/it] 40%|████ | 20/50 [00:21<00:31, 1.06s/it] 42%|████▏ | 21/50 [00:22<00:30, 1.06s/it] 44%|████▍ | 22/50 [00:23<00:29, 1.06s/it] 46%|████▌ | 23/50 [00:24<00:28, 1.06s/it] 48%|████▊ | 24/50 [00:25<00:27, 1.06s/it] 50%|█████ | 25/50 [00:26<00:26, 1.06s/it] 52%|█████▏ | 26/50 [00:27<00:25, 1.07s/it] 54%|█████▍ | 27/50 [00:28<00:24, 1.07s/it] 56%|█████▌ | 28/50 [00:29<00:23, 1.07s/it] 58%|█████▊ | 29/50 [00:30<00:22, 1.07s/it] 60%|██████ | 30/50 [00:31<00:21, 1.07s/it] 62%|██████▏ | 31/50 [00:32<00:20, 1.07s/it] 64%|██████▍ | 32/50 [00:33<00:19, 1.07s/it] 66%|██████▌ | 33/50 [00:35<00:18, 1.08s/it] 68%|██████▊ | 34/50 [00:36<00:17, 1.08s/it] 70%|███████ | 35/50 [00:37<00:16, 1.08s/it] 72%|███████▏ | 36/50 [00:38<00:15, 1.08s/it] 74%|███████▍ | 37/50 [00:39<00:13, 1.07s/it] 76%|███████▌ | 38/50 [00:40<00:12, 1.07s/it] 78%|███████▊ | 39/50 [00:41<00:11, 1.08s/it] 80%|████████ | 40/50 [00:42<00:10, 1.08s/it] 82%|████████▏ | 41/50 [00:43<00:09, 1.08s/it] 84%|████████▍ | 42/50 [00:44<00:08, 1.08s/it] 86%|████████▌ | 43/50 [00:45<00:07, 1.08s/it] 88%|████████▊ | 44/50 [00:46<00:06, 1.08s/it] 90%|█████████ | 45/50 [00:47<00:05, 1.08s/it] 92%|█████████▏| 46/50 [00:49<00:04, 1.08s/it] 94%|█████████▍| 47/50 [00:50<00:03, 1.08s/it] 96%|█████████▌| 48/50 [00:51<00:02, 1.08s/it] 98%|█████████▊| 49/50 [00:52<00:01, 1.08s/it] 100%|██████████| 50/50 [00:53<00:00, 1.08s/it] 100%|██████████| 50/50 [00:53<00:00, 1.07s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDs3vqry3bxnhqlklvsynhb7kp2mStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, skull
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, skull", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, skull", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, skull", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, skull", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:07:51.366719Z", "created_at": "2022-11-24T04:06:56.196879Z", "data_removed": false, "error": null, "id": "s3vqry3bxnhqlklvsynhb7kp2m", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, skull", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 9542\nGlobal seed set to 9542\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:51, 1.05s/it]\n 4%|▍ | 2/50 [00:02<00:48, 1.02s/it]\n 6%|▌ | 3/50 [00:03<00:47, 1.01s/it]\n 8%|▊ | 4/50 [00:04<00:46, 1.01s/it]\n 10%|█ | 5/50 [00:05<00:45, 1.00s/it]\n 12%|█▏ | 6/50 [00:06<00:43, 1.00it/s]\n 14%|█▍ | 7/50 [00:07<00:42, 1.00it/s]\n 16%|█▌ | 8/50 [00:08<00:41, 1.00it/s]\n 18%|█▊ | 9/50 [00:09<00:40, 1.00it/s]\n 20%|██ | 10/50 [00:10<00:40, 1.00s/it]\n 22%|██▏ | 11/50 [00:11<00:39, 1.00s/it]\n 24%|██▍ | 12/50 [00:12<00:38, 1.00s/it]\n 26%|██▌ | 13/50 [00:13<00:37, 1.00s/it]\n 28%|██▊ | 14/50 [00:14<00:36, 1.00s/it]\n 30%|███ | 15/50 [00:15<00:35, 1.01s/it]\n 32%|███▏ | 16/50 [00:16<00:34, 1.01s/it]\n 34%|███▍ | 17/50 [00:17<00:33, 1.01s/it]\n 36%|███▌ | 18/50 [00:18<00:32, 1.01s/it]\n 38%|███▊ | 19/50 [00:19<00:31, 1.01s/it]\n 40%|████ | 20/50 [00:20<00:30, 1.01s/it]\n 42%|████▏ | 21/50 [00:21<00:29, 1.01s/it]\n 44%|████▍ | 22/50 [00:22<00:28, 1.01s/it]\n 46%|████▌ | 23/50 [00:23<00:27, 1.01s/it]\n 48%|████▊ | 24/50 [00:24<00:26, 1.01s/it]\n 50%|█████ | 25/50 [00:25<00:25, 1.02s/it]\n 52%|█████▏ | 26/50 [00:26<00:24, 1.02s/it]\n 54%|█████▍ | 27/50 [00:27<00:23, 1.02s/it]\n 56%|█████▌ | 28/50 [00:28<00:22, 1.02s/it]\n 58%|█████▊ | 29/50 [00:29<00:21, 1.02s/it]\n 60%|██████ | 30/50 [00:30<00:20, 1.02s/it]\n 62%|██████▏ | 31/50 [00:31<00:19, 1.02s/it]\n 64%|██████▍ | 32/50 [00:32<00:18, 1.02s/it]\n 66%|██████▌ | 33/50 [00:33<00:17, 1.02s/it]\n 68%|██████▊ | 34/50 [00:34<00:16, 1.02s/it]\n 70%|███████ | 35/50 [00:35<00:15, 1.03s/it]\n 72%|███████▏ | 36/50 [00:36<00:14, 1.03s/it]\n 74%|███████▍ | 37/50 [00:37<00:13, 1.03s/it]\n 76%|███████▌ | 38/50 [00:38<00:12, 1.03s/it]\n 78%|███████▊ | 39/50 [00:39<00:11, 1.03s/it]\n 80%|████████ | 40/50 [00:40<00:10, 1.03s/it]\n 82%|████████▏ | 41/50 [00:41<00:09, 1.03s/it]\n 84%|████████▍ | 42/50 [00:42<00:08, 1.03s/it]\n 86%|████████▌ | 43/50 [00:43<00:07, 1.04s/it]\n 88%|████████▊ | 44/50 [00:44<00:06, 1.04s/it]\n 90%|█████████ | 45/50 [00:45<00:05, 1.04s/it]\n 92%|█████████▏| 46/50 [00:46<00:04, 1.04s/it]\n 94%|█████████▍| 47/50 [00:47<00:03, 1.04s/it]\n 96%|█████████▌| 48/50 [00:48<00:02, 1.04s/it]\n 98%|█████████▊| 49/50 [00:49<00:01, 1.04s/it]\n100%|██████████| 50/50 [00:51<00:00, 1.04s/it]\n100%|██████████| 50/50 [00:51<00:00, 1.02s/it]", "metrics": { "predict_time": 55.134099, "total_time": 55.16984 }, "output": [ "https://replicate.delivery/pbxt/FY24OGJ0jQotDJa4AevsL4gYexl4o5o52eyfRf5s37RtCQZAC/out-0.png", "https://replicate.delivery/pbxt/u1ctfSzUzGVkSyxsAw3t64pe2dEbG8mSX7Vdn5cEFNDVAKDQA/out-1.png", "https://replicate.delivery/pbxt/OzvzDuAEZpaqF5dTLbEB07FhfQNTb5lZOxqv3vAxofDVAKDQA/out-2.png", "https://replicate.delivery/pbxt/QSw2SUENfgUzYynZfcpcyePhuyA1hS3bSKtMTYJP2SbsAUGgA/out-3.png" ], "started_at": "2022-11-24T04:06:56.232620Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/s3vqry3bxnhqlklvsynhb7kp2m", "cancel": "https://api.replicate.com/v1/predictions/s3vqry3bxnhqlklvsynhb7kp2m/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 9542 Global seed set to 9542 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:51, 1.05s/it] 4%|▍ | 2/50 [00:02<00:48, 1.02s/it] 6%|▌ | 3/50 [00:03<00:47, 1.01s/it] 8%|▊ | 4/50 [00:04<00:46, 1.01s/it] 10%|█ | 5/50 [00:05<00:45, 1.00s/it] 12%|█▏ | 6/50 [00:06<00:43, 1.00it/s] 14%|█▍ | 7/50 [00:07<00:42, 1.00it/s] 16%|█▌ | 8/50 [00:08<00:41, 1.00it/s] 18%|█▊ | 9/50 [00:09<00:40, 1.00it/s] 20%|██ | 10/50 [00:10<00:40, 1.00s/it] 22%|██▏ | 11/50 [00:11<00:39, 1.00s/it] 24%|██▍ | 12/50 [00:12<00:38, 1.00s/it] 26%|██▌ | 13/50 [00:13<00:37, 1.00s/it] 28%|██▊ | 14/50 [00:14<00:36, 1.00s/it] 30%|███ | 15/50 [00:15<00:35, 1.01s/it] 32%|███▏ | 16/50 [00:16<00:34, 1.01s/it] 34%|███▍ | 17/50 [00:17<00:33, 1.01s/it] 36%|███▌ | 18/50 [00:18<00:32, 1.01s/it] 38%|███▊ | 19/50 [00:19<00:31, 1.01s/it] 40%|████ | 20/50 [00:20<00:30, 1.01s/it] 42%|████▏ | 21/50 [00:21<00:29, 1.01s/it] 44%|████▍ | 22/50 [00:22<00:28, 1.01s/it] 46%|████▌ | 23/50 [00:23<00:27, 1.01s/it] 48%|████▊ | 24/50 [00:24<00:26, 1.01s/it] 50%|█████ | 25/50 [00:25<00:25, 1.02s/it] 52%|█████▏ | 26/50 [00:26<00:24, 1.02s/it] 54%|█████▍ | 27/50 [00:27<00:23, 1.02s/it] 56%|█████▌ | 28/50 [00:28<00:22, 1.02s/it] 58%|█████▊ | 29/50 [00:29<00:21, 1.02s/it] 60%|██████ | 30/50 [00:30<00:20, 1.02s/it] 62%|██████▏ | 31/50 [00:31<00:19, 1.02s/it] 64%|██████▍ | 32/50 [00:32<00:18, 1.02s/it] 66%|██████▌ | 33/50 [00:33<00:17, 1.02s/it] 68%|██████▊ | 34/50 [00:34<00:16, 1.02s/it] 70%|███████ | 35/50 [00:35<00:15, 1.03s/it] 72%|███████▏ | 36/50 [00:36<00:14, 1.03s/it] 74%|███████▍ | 37/50 [00:37<00:13, 1.03s/it] 76%|███████▌ | 38/50 [00:38<00:12, 1.03s/it] 78%|███████▊ | 39/50 [00:39<00:11, 1.03s/it] 80%|████████ | 40/50 [00:40<00:10, 1.03s/it] 82%|████████▏ | 41/50 [00:41<00:09, 1.03s/it] 84%|████████▍ | 42/50 [00:42<00:08, 1.03s/it] 86%|████████▌ | 43/50 [00:43<00:07, 1.04s/it] 88%|████████▊ | 44/50 [00:44<00:06, 1.04s/it] 90%|█████████ | 45/50 [00:45<00:05, 1.04s/it] 92%|█████████▏| 46/50 [00:46<00:04, 1.04s/it] 94%|█████████▍| 47/50 [00:47<00:03, 1.04s/it] 96%|█████████▌| 48/50 [00:48<00:02, 1.04s/it] 98%|█████████▊| 49/50 [00:49<00:01, 1.04s/it] 100%|██████████| 50/50 [00:51<00:00, 1.04s/it] 100%|██████████| 50/50 [00:51<00:00, 1.02s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDjjzxeleekfgwnp6jqu3z3tb2emStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, eagle
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, eagle", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, eagle", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, eagle", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, eagle", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:08:19.196865Z", "created_at": "2022-11-24T04:07:20.202831Z", "data_removed": false, "error": null, "id": "jjzxeleekfgwnp6jqu3z3tb2em", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, eagle", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 3834\nGlobal seed set to 3834\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:52, 1.06s/it]\n 4%|▍ | 2/50 [00:02<00:50, 1.04s/it]\n 6%|▌ | 3/50 [00:03<00:48, 1.04s/it]\n 8%|▊ | 4/50 [00:04<00:47, 1.04s/it]\n 10%|█ | 5/50 [00:05<00:46, 1.04s/it]\n 12%|█▏ | 6/50 [00:06<00:45, 1.04s/it]\n 14%|█▍ | 7/50 [00:07<00:44, 1.04s/it]\n 16%|█▌ | 8/50 [00:08<00:43, 1.05s/it]\n 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it]\n 20%|██ | 10/50 [00:10<00:42, 1.06s/it]\n 22%|██▏ | 11/50 [00:11<00:41, 1.06s/it]\n 24%|██▍ | 12/50 [00:12<00:40, 1.06s/it]\n 26%|██▌ | 13/50 [00:13<00:39, 1.06s/it]\n 28%|██▊ | 14/50 [00:14<00:38, 1.07s/it]\n 30%|███ | 15/50 [00:15<00:37, 1.07s/it]\n 32%|███▏ | 16/50 [00:16<00:36, 1.07s/it]\n 34%|███▍ | 17/50 [00:17<00:35, 1.08s/it]\n 36%|███▌ | 18/50 [00:19<00:34, 1.08s/it]\n 38%|███▊ | 19/50 [00:20<00:33, 1.08s/it]\n 40%|████ | 20/50 [00:21<00:32, 1.09s/it]\n 42%|████▏ | 21/50 [00:22<00:31, 1.09s/it]\n 44%|████▍ | 22/50 [00:23<00:30, 1.09s/it]\n 46%|████▌ | 23/50 [00:24<00:29, 1.10s/it]\n 48%|████▊ | 24/50 [00:25<00:28, 1.10s/it]\n 50%|█████ | 25/50 [00:26<00:27, 1.11s/it]\n 52%|█████▏ | 26/50 [00:27<00:26, 1.11s/it]\n 54%|█████▍ | 27/50 [00:29<00:25, 1.11s/it]\n 56%|█████▌ | 28/50 [00:30<00:24, 1.11s/it]\n 58%|█████▊ | 29/50 [00:31<00:23, 1.11s/it]\n 60%|██████ | 30/50 [00:32<00:22, 1.11s/it]\n 62%|██████▏ | 31/50 [00:33<00:21, 1.11s/it]\n 64%|██████▍ | 32/50 [00:34<00:20, 1.11s/it]\n 66%|██████▌ | 33/50 [00:35<00:18, 1.11s/it]\n 68%|██████▊ | 34/50 [00:36<00:17, 1.11s/it]\n 70%|███████ | 35/50 [00:37<00:16, 1.11s/it]\n 72%|███████▏ | 36/50 [00:39<00:15, 1.11s/it]\n 74%|███████▍ | 37/50 [00:40<00:14, 1.11s/it]\n 76%|███████▌ | 38/50 [00:41<00:13, 1.11s/it]\n 78%|███████▊ | 39/50 [00:42<00:12, 1.10s/it]\n 80%|████████ | 40/50 [00:43<00:11, 1.10s/it]\n 82%|████████▏ | 41/50 [00:44<00:09, 1.10s/it]\n 84%|████████▍ | 42/50 [00:45<00:08, 1.10s/it]\n 86%|████████▌ | 43/50 [00:46<00:07, 1.10s/it]\n 88%|████████▊ | 44/50 [00:47<00:06, 1.09s/it]\n 90%|█████████ | 45/50 [00:48<00:05, 1.09s/it]\n 92%|█████████▏| 46/50 [00:49<00:04, 1.08s/it]\n 94%|█████████▍| 47/50 [00:51<00:03, 1.08s/it]\n 96%|█████████▌| 48/50 [00:52<00:02, 1.08s/it]\n 98%|█████████▊| 49/50 [00:53<00:01, 1.08s/it]\n100%|██████████| 50/50 [00:54<00:00, 1.08s/it]\n100%|██████████| 50/50 [00:54<00:00, 1.08s/it]", "metrics": { "predict_time": 58.959268, "total_time": 58.994034 }, "output": [ "https://replicate.delivery/pbxt/fho8UxYneIkKBk5fvGJsdFOwK7ZJJeds7uvSs2s8kqnADoMAB/out-0.png", "https://replicate.delivery/pbxt/ftRKrlAD0K2kJy7yB22QS9wEHcChE09EydRBCqIvgw2YAlBIA/out-1.png", "https://replicate.delivery/pbxt/NlIXftwtRyxAay6FEqj1yxeEe871PYwQkEBkBnLJNrNiBUGgA/out-2.png", "https://replicate.delivery/pbxt/iiXCAO7qRcrONp1Eh06Y6XaPj51JxoYR11rOvdFnOQhMgyAE/out-3.png" ], "started_at": "2022-11-24T04:07:20.237597Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jjzxeleekfgwnp6jqu3z3tb2em", "cancel": "https://api.replicate.com/v1/predictions/jjzxeleekfgwnp6jqu3z3tb2em/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 3834 Global seed set to 3834 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:52, 1.06s/it] 4%|▍ | 2/50 [00:02<00:50, 1.04s/it] 6%|▌ | 3/50 [00:03<00:48, 1.04s/it] 8%|▊ | 4/50 [00:04<00:47, 1.04s/it] 10%|█ | 5/50 [00:05<00:46, 1.04s/it] 12%|█▏ | 6/50 [00:06<00:45, 1.04s/it] 14%|█▍ | 7/50 [00:07<00:44, 1.04s/it] 16%|█▌ | 8/50 [00:08<00:43, 1.05s/it] 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it] 20%|██ | 10/50 [00:10<00:42, 1.06s/it] 22%|██▏ | 11/50 [00:11<00:41, 1.06s/it] 24%|██▍ | 12/50 [00:12<00:40, 1.06s/it] 26%|██▌ | 13/50 [00:13<00:39, 1.06s/it] 28%|██▊ | 14/50 [00:14<00:38, 1.07s/it] 30%|███ | 15/50 [00:15<00:37, 1.07s/it] 32%|███▏ | 16/50 [00:16<00:36, 1.07s/it] 34%|███▍ | 17/50 [00:17<00:35, 1.08s/it] 36%|███▌ | 18/50 [00:19<00:34, 1.08s/it] 38%|███▊ | 19/50 [00:20<00:33, 1.08s/it] 40%|████ | 20/50 [00:21<00:32, 1.09s/it] 42%|████▏ | 21/50 [00:22<00:31, 1.09s/it] 44%|████▍ | 22/50 [00:23<00:30, 1.09s/it] 46%|████▌ | 23/50 [00:24<00:29, 1.10s/it] 48%|████▊ | 24/50 [00:25<00:28, 1.10s/it] 50%|█████ | 25/50 [00:26<00:27, 1.11s/it] 52%|█████▏ | 26/50 [00:27<00:26, 1.11s/it] 54%|█████▍ | 27/50 [00:29<00:25, 1.11s/it] 56%|█████▌ | 28/50 [00:30<00:24, 1.11s/it] 58%|█████▊ | 29/50 [00:31<00:23, 1.11s/it] 60%|██████ | 30/50 [00:32<00:22, 1.11s/it] 62%|██████▏ | 31/50 [00:33<00:21, 1.11s/it] 64%|██████▍ | 32/50 [00:34<00:20, 1.11s/it] 66%|██████▌ | 33/50 [00:35<00:18, 1.11s/it] 68%|██████▊ | 34/50 [00:36<00:17, 1.11s/it] 70%|███████ | 35/50 [00:37<00:16, 1.11s/it] 72%|███████▏ | 36/50 [00:39<00:15, 1.11s/it] 74%|███████▍ | 37/50 [00:40<00:14, 1.11s/it] 76%|███████▌ | 38/50 [00:41<00:13, 1.11s/it] 78%|███████▊ | 39/50 [00:42<00:12, 1.10s/it] 80%|████████ | 40/50 [00:43<00:11, 1.10s/it] 82%|████████▏ | 41/50 [00:44<00:09, 1.10s/it] 84%|████████▍ | 42/50 [00:45<00:08, 1.10s/it] 86%|████████▌ | 43/50 [00:46<00:07, 1.10s/it] 88%|████████▊ | 44/50 [00:47<00:06, 1.09s/it] 90%|█████████ | 45/50 [00:48<00:05, 1.09s/it] 92%|█████████▏| 46/50 [00:49<00:04, 1.08s/it] 94%|█████████▍| 47/50 [00:51<00:03, 1.08s/it] 96%|█████████▌| 48/50 [00:52<00:02, 1.08s/it] 98%|█████████▊| 49/50 [00:53<00:01, 1.08s/it] 100%|██████████| 50/50 [00:54<00:00, 1.08s/it] 100%|██████████| 50/50 [00:54<00:00, 1.08s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDgu2ybjegynfqjprylvmwdkz744StatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, lion
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, lion", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, lion", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, lion", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, lion", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:11:14.377848Z", "created_at": "2022-11-24T04:10:17.861403Z", "data_removed": false, "error": null, "id": "gu2ybjegynfqjprylvmwdkz744", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, lion", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 63557\nGlobal seed set to 63557\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:50, 1.04s/it]\n 4%|▍ | 2/50 [00:02<00:48, 1.02s/it]\n 6%|▌ | 3/50 [00:03<00:47, 1.01s/it]\n 8%|▊ | 4/50 [00:04<00:46, 1.01s/it]\n 10%|█ | 5/50 [00:05<00:45, 1.01s/it]\n 12%|█▏ | 6/50 [00:06<00:44, 1.01s/it]\n 14%|█▍ | 7/50 [00:07<00:43, 1.01s/it]\n 16%|█▌ | 8/50 [00:08<00:42, 1.01s/it]\n 18%|█▊ | 9/50 [00:09<00:41, 1.02s/it]\n 20%|██ | 10/50 [00:10<00:40, 1.02s/it]\n 22%|██▏ | 11/50 [00:11<00:39, 1.01s/it]\n 24%|██▍ | 12/50 [00:12<00:38, 1.01s/it]\n 26%|██▌ | 13/50 [00:13<00:37, 1.01s/it]\n 28%|██▊ | 14/50 [00:14<00:36, 1.01s/it]\n 30%|███ | 15/50 [00:15<00:35, 1.02s/it]\n 32%|███▏ | 16/50 [00:16<00:34, 1.02s/it]\n 34%|███▍ | 17/50 [00:17<00:33, 1.02s/it]\n 36%|███▌ | 18/50 [00:18<00:32, 1.02s/it]\n 38%|███▊ | 19/50 [00:19<00:31, 1.02s/it]\n 40%|████ | 20/50 [00:20<00:30, 1.02s/it]\n 42%|████▏ | 21/50 [00:21<00:29, 1.03s/it]\n 44%|████▍ | 22/50 [00:22<00:28, 1.03s/it]\n 46%|████▌ | 23/50 [00:23<00:27, 1.03s/it]\n 48%|████▊ | 24/50 [00:24<00:26, 1.03s/it]\n 50%|█████ | 25/50 [00:25<00:25, 1.03s/it]\n 52%|█████▏ | 26/50 [00:26<00:24, 1.03s/it]\n 54%|█████▍ | 27/50 [00:27<00:23, 1.03s/it]\n 56%|█████▌ | 28/50 [00:28<00:22, 1.03s/it]\n 58%|█████▊ | 29/50 [00:29<00:21, 1.03s/it]\n 60%|██████ | 30/50 [00:30<00:20, 1.03s/it]\n 62%|██████▏ | 31/50 [00:31<00:19, 1.03s/it]\n 64%|██████▍ | 32/50 [00:32<00:18, 1.03s/it]\n 66%|██████▌ | 33/50 [00:33<00:17, 1.03s/it]\n 68%|██████▊ | 34/50 [00:34<00:16, 1.03s/it]\n 70%|███████ | 35/50 [00:35<00:15, 1.04s/it]\n 72%|███████▏ | 36/50 [00:36<00:14, 1.04s/it]\n 74%|███████▍ | 37/50 [00:37<00:13, 1.04s/it]\n 76%|███████▌ | 38/50 [00:38<00:12, 1.04s/it]\n 78%|███████▊ | 39/50 [00:40<00:11, 1.04s/it]\n 80%|████████ | 40/50 [00:41<00:10, 1.04s/it]\n 82%|████████▏ | 41/50 [00:42<00:09, 1.04s/it]\n 84%|████████▍ | 42/50 [00:43<00:08, 1.04s/it]\n 86%|████████▌ | 43/50 [00:44<00:07, 1.04s/it]\n 88%|████████▊ | 44/50 [00:45<00:06, 1.04s/it]\n 90%|█████████ | 45/50 [00:46<00:05, 1.05s/it]\n 92%|█████████▏| 46/50 [00:47<00:04, 1.05s/it]\n 94%|█████████▍| 47/50 [00:48<00:03, 1.05s/it]\n 96%|█████████▌| 48/50 [00:49<00:02, 1.05s/it]\n 98%|█████████▊| 49/50 [00:50<00:01, 1.05s/it]\n100%|██████████| 50/50 [00:51<00:00, 1.05s/it]\n100%|██████████| 50/50 [00:51<00:00, 1.03s/it]", "metrics": { "predict_time": 56.481819, "total_time": 56.516445 }, "output": [ "https://replicate.delivery/pbxt/W0XoptbTYe1KUqcvJpRRdS3wbXBfSyOLEdzrUASbIRCfGUGgA/out-0.png", "https://replicate.delivery/pbxt/6w4nYfyNqeveWIzI8ksVJl0SZpF0cRumQbfVFCziljyDOoMAB/out-1.png", "https://replicate.delivery/pbxt/of9N8s2O66TVM6qQqTKMS6UeMPeotaQZdjWuy1jaq3eHOoMAB/out-2.png", "https://replicate.delivery/pbxt/U193KEMZ94ZQHxKQEjdz84ODS1S2nHaEiRMvvHigf9rwBlBIA/out-3.png" ], "started_at": "2022-11-24T04:10:17.896029Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gu2ybjegynfqjprylvmwdkz744", "cancel": "https://api.replicate.com/v1/predictions/gu2ybjegynfqjprylvmwdkz744/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 63557 Global seed set to 63557 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:50, 1.04s/it] 4%|▍ | 2/50 [00:02<00:48, 1.02s/it] 6%|▌ | 3/50 [00:03<00:47, 1.01s/it] 8%|▊ | 4/50 [00:04<00:46, 1.01s/it] 10%|█ | 5/50 [00:05<00:45, 1.01s/it] 12%|█▏ | 6/50 [00:06<00:44, 1.01s/it] 14%|█▍ | 7/50 [00:07<00:43, 1.01s/it] 16%|█▌ | 8/50 [00:08<00:42, 1.01s/it] 18%|█▊ | 9/50 [00:09<00:41, 1.02s/it] 20%|██ | 10/50 [00:10<00:40, 1.02s/it] 22%|██▏ | 11/50 [00:11<00:39, 1.01s/it] 24%|██▍ | 12/50 [00:12<00:38, 1.01s/it] 26%|██▌ | 13/50 [00:13<00:37, 1.01s/it] 28%|██▊ | 14/50 [00:14<00:36, 1.01s/it] 30%|███ | 15/50 [00:15<00:35, 1.02s/it] 32%|███▏ | 16/50 [00:16<00:34, 1.02s/it] 34%|███▍ | 17/50 [00:17<00:33, 1.02s/it] 36%|███▌ | 18/50 [00:18<00:32, 1.02s/it] 38%|███▊ | 19/50 [00:19<00:31, 1.02s/it] 40%|████ | 20/50 [00:20<00:30, 1.02s/it] 42%|████▏ | 21/50 [00:21<00:29, 1.03s/it] 44%|████▍ | 22/50 [00:22<00:28, 1.03s/it] 46%|████▌ | 23/50 [00:23<00:27, 1.03s/it] 48%|████▊ | 24/50 [00:24<00:26, 1.03s/it] 50%|█████ | 25/50 [00:25<00:25, 1.03s/it] 52%|█████▏ | 26/50 [00:26<00:24, 1.03s/it] 54%|█████▍ | 27/50 [00:27<00:23, 1.03s/it] 56%|█████▌ | 28/50 [00:28<00:22, 1.03s/it] 58%|█████▊ | 29/50 [00:29<00:21, 1.03s/it] 60%|██████ | 30/50 [00:30<00:20, 1.03s/it] 62%|██████▏ | 31/50 [00:31<00:19, 1.03s/it] 64%|██████▍ | 32/50 [00:32<00:18, 1.03s/it] 66%|██████▌ | 33/50 [00:33<00:17, 1.03s/it] 68%|██████▊ | 34/50 [00:34<00:16, 1.03s/it] 70%|███████ | 35/50 [00:35<00:15, 1.04s/it] 72%|███████▏ | 36/50 [00:36<00:14, 1.04s/it] 74%|███████▍ | 37/50 [00:37<00:13, 1.04s/it] 76%|███████▌ | 38/50 [00:38<00:12, 1.04s/it] 78%|███████▊ | 39/50 [00:40<00:11, 1.04s/it] 80%|████████ | 40/50 [00:41<00:10, 1.04s/it] 82%|████████▏ | 41/50 [00:42<00:09, 1.04s/it] 84%|████████▍ | 42/50 [00:43<00:08, 1.04s/it] 86%|████████▌ | 43/50 [00:44<00:07, 1.04s/it] 88%|████████▊ | 44/50 [00:45<00:06, 1.04s/it] 90%|█████████ | 45/50 [00:46<00:05, 1.05s/it] 92%|█████████▏| 46/50 [00:47<00:04, 1.05s/it] 94%|█████████▍| 47/50 [00:48<00:03, 1.05s/it] 96%|█████████▌| 48/50 [00:49<00:02, 1.05s/it] 98%|█████████▊| 49/50 [00:50<00:01, 1.05s/it] 100%|██████████| 50/50 [00:51<00:00, 1.05s/it] 100%|██████████| 50/50 [00:51<00:00, 1.03s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDq7umsew545bipaiiv3lbzu2vnaStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, cow
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, cow", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, cow", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, cow", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, cow", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:11:44.265435Z", "created_at": "2022-11-24T04:10:29.776405Z", "data_removed": false, "error": null, "id": "q7umsew545bipaiiv3lbzu2vna", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, cow", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 26859\nGlobal seed set to 26859\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:53, 1.09s/it]\n 4%|▍ | 2/50 [00:02<00:51, 1.08s/it]\n 6%|▌ | 3/50 [00:03<00:50, 1.07s/it]\n 8%|▊ | 4/50 [00:04<00:49, 1.07s/it]\n 10%|█ | 5/50 [00:05<00:48, 1.07s/it]\n 12%|█▏ | 6/50 [00:06<00:47, 1.07s/it]\n 14%|█▍ | 7/50 [00:07<00:46, 1.08s/it]\n 16%|█▌ | 8/50 [00:08<00:45, 1.08s/it]\n 18%|█▊ | 9/50 [00:09<00:44, 1.08s/it]\n 20%|██ | 10/50 [00:10<00:43, 1.08s/it]\n 22%|██▏ | 11/50 [00:11<00:42, 1.08s/it]\n 24%|██▍ | 12/50 [00:12<00:40, 1.08s/it]\n 26%|██▌ | 13/50 [00:14<00:39, 1.08s/it]\n 28%|██▊ | 14/50 [00:15<00:38, 1.08s/it]\n 30%|███ | 15/50 [00:16<00:37, 1.08s/it]\n 32%|███▏ | 16/50 [00:17<00:36, 1.08s/it]\n 34%|███▍ | 17/50 [00:18<00:35, 1.08s/it]\n 36%|███▌ | 18/50 [00:19<00:34, 1.08s/it]\n 38%|███▊ | 19/50 [00:20<00:33, 1.08s/it]\n 40%|████ | 20/50 [00:21<00:32, 1.08s/it]\n 42%|████▏ | 21/50 [00:22<00:31, 1.08s/it]\n 44%|████▍ | 22/50 [00:23<00:30, 1.08s/it]\n 46%|████▌ | 23/50 [00:24<00:29, 1.08s/it]\n 48%|████▊ | 24/50 [00:25<00:28, 1.08s/it]\n 50%|█████ | 25/50 [00:26<00:26, 1.08s/it]\n 52%|█████▏ | 26/50 [00:28<00:25, 1.08s/it]\n 54%|█████▍ | 27/50 [00:29<00:24, 1.07s/it]\n 56%|█████▌ | 28/50 [00:30<00:23, 1.07s/it]\n 58%|█████▊ | 29/50 [00:31<00:22, 1.07s/it]\n 60%|██████ | 30/50 [00:32<00:21, 1.07s/it]\n 62%|██████▏ | 31/50 [00:33<00:20, 1.07s/it]\n 64%|██████▍ | 32/50 [00:34<00:19, 1.07s/it]\n 66%|██████▌ | 33/50 [00:35<00:18, 1.07s/it]\n 68%|██████▊ | 34/50 [00:36<00:17, 1.07s/it]\n 70%|███████ | 35/50 [00:37<00:16, 1.07s/it]\n 72%|███████▏ | 36/50 [00:38<00:15, 1.07s/it]\n 74%|███████▍ | 37/50 [00:39<00:13, 1.07s/it]\n 76%|███████▌ | 38/50 [00:40<00:12, 1.07s/it]\n 78%|███████▊ | 39/50 [00:41<00:11, 1.07s/it]\n 80%|████████ | 40/50 [00:43<00:10, 1.07s/it]\n 82%|████████▏ | 41/50 [00:44<00:09, 1.07s/it]\n 84%|████████▍ | 42/50 [00:45<00:08, 1.07s/it]\n 86%|████████▌ | 43/50 [00:46<00:07, 1.07s/it]\n 88%|████████▊ | 44/50 [00:47<00:06, 1.07s/it]\n 90%|█████████ | 45/50 [00:48<00:05, 1.07s/it]\n 92%|█████████▏| 46/50 [00:49<00:04, 1.07s/it]\n 94%|█████████▍| 47/50 [00:50<00:03, 1.07s/it]\n 96%|█████████▌| 48/50 [00:51<00:02, 1.07s/it]\n 98%|█████████▊| 49/50 [00:52<00:01, 1.07s/it]\n100%|██████████| 50/50 [00:53<00:00, 1.07s/it]\n100%|██████████| 50/50 [00:53<00:00, 1.08s/it]", "metrics": { "predict_time": 58.239933, "total_time": 74.48903 }, "output": [ "https://replicate.delivery/pbxt/ZT7ww6edRTWYFa63PwRQpoHSSZczQf6Mtl8pf9Rhd3T7HUGgA/out-0.png", "https://replicate.delivery/pbxt/TmHsEBeJGfhelImOfnSdu88iOKojRHU6sXwvevFugekjfBlBIA/out-1.png", "https://replicate.delivery/pbxt/kTDnKVNA9sJ0JJReQ3zEDhSfQPKUTuj7JsfcfHyjxx95PoMAB/out-2.png", "https://replicate.delivery/pbxt/fene1FtRX4chpJfq3UNcUAale3d5oY7qebC6MPBu6hw4fBlBIA/out-3.png" ], "started_at": "2022-11-24T04:10:46.025502Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/q7umsew545bipaiiv3lbzu2vna", "cancel": "https://api.replicate.com/v1/predictions/q7umsew545bipaiiv3lbzu2vna/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 26859 Global seed set to 26859 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:53, 1.09s/it] 4%|▍ | 2/50 [00:02<00:51, 1.08s/it] 6%|▌ | 3/50 [00:03<00:50, 1.07s/it] 8%|▊ | 4/50 [00:04<00:49, 1.07s/it] 10%|█ | 5/50 [00:05<00:48, 1.07s/it] 12%|█▏ | 6/50 [00:06<00:47, 1.07s/it] 14%|█▍ | 7/50 [00:07<00:46, 1.08s/it] 16%|█▌ | 8/50 [00:08<00:45, 1.08s/it] 18%|█▊ | 9/50 [00:09<00:44, 1.08s/it] 20%|██ | 10/50 [00:10<00:43, 1.08s/it] 22%|██▏ | 11/50 [00:11<00:42, 1.08s/it] 24%|██▍ | 12/50 [00:12<00:40, 1.08s/it] 26%|██▌ | 13/50 [00:14<00:39, 1.08s/it] 28%|██▊ | 14/50 [00:15<00:38, 1.08s/it] 30%|███ | 15/50 [00:16<00:37, 1.08s/it] 32%|███▏ | 16/50 [00:17<00:36, 1.08s/it] 34%|███▍ | 17/50 [00:18<00:35, 1.08s/it] 36%|███▌ | 18/50 [00:19<00:34, 1.08s/it] 38%|███▊ | 19/50 [00:20<00:33, 1.08s/it] 40%|████ | 20/50 [00:21<00:32, 1.08s/it] 42%|████▏ | 21/50 [00:22<00:31, 1.08s/it] 44%|████▍ | 22/50 [00:23<00:30, 1.08s/it] 46%|████▌ | 23/50 [00:24<00:29, 1.08s/it] 48%|████▊ | 24/50 [00:25<00:28, 1.08s/it] 50%|█████ | 25/50 [00:26<00:26, 1.08s/it] 52%|█████▏ | 26/50 [00:28<00:25, 1.08s/it] 54%|█████▍ | 27/50 [00:29<00:24, 1.07s/it] 56%|█████▌ | 28/50 [00:30<00:23, 1.07s/it] 58%|█████▊ | 29/50 [00:31<00:22, 1.07s/it] 60%|██████ | 30/50 [00:32<00:21, 1.07s/it] 62%|██████▏ | 31/50 [00:33<00:20, 1.07s/it] 64%|██████▍ | 32/50 [00:34<00:19, 1.07s/it] 66%|██████▌ | 33/50 [00:35<00:18, 1.07s/it] 68%|██████▊ | 34/50 [00:36<00:17, 1.07s/it] 70%|███████ | 35/50 [00:37<00:16, 1.07s/it] 72%|███████▏ | 36/50 [00:38<00:15, 1.07s/it] 74%|███████▍ | 37/50 [00:39<00:13, 1.07s/it] 76%|███████▌ | 38/50 [00:40<00:12, 1.07s/it] 78%|███████▊ | 39/50 [00:41<00:11, 1.07s/it] 80%|████████ | 40/50 [00:43<00:10, 1.07s/it] 82%|████████▏ | 41/50 [00:44<00:09, 1.07s/it] 84%|████████▍ | 42/50 [00:45<00:08, 1.07s/it] 86%|████████▌ | 43/50 [00:46<00:07, 1.07s/it] 88%|████████▊ | 44/50 [00:47<00:06, 1.07s/it] 90%|█████████ | 45/50 [00:48<00:05, 1.07s/it] 92%|█████████▏| 46/50 [00:49<00:04, 1.07s/it] 94%|█████████▍| 47/50 [00:50<00:03, 1.07s/it] 96%|█████████▌| 48/50 [00:51<00:02, 1.07s/it] 98%|█████████▊| 49/50 [00:52<00:01, 1.07s/it] 100%|██████████| 50/50 [00:53<00:00, 1.07s/it] 100%|██████████| 50/50 [00:53<00:00, 1.08s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587ID3z2y57ngf5b4jblysjkhzxv5wuStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, cow
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, cow", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, cow", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, cow", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, cow", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T04:12:58.049609Z", "created_at": "2022-11-24T04:12:02.436498Z", "data_removed": false, "error": null, "id": "3z2y57ngf5b4jblysjkhzxv5wu", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, cow", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 35940\nGlobal seed set to 35940\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:51, 1.05s/it]\n 4%|▍ | 2/50 [00:02<00:48, 1.02s/it]\n 6%|▌ | 3/50 [00:03<00:47, 1.01s/it]\n 8%|▊ | 4/50 [00:04<00:46, 1.00s/it]\n 10%|█ | 5/50 [00:05<00:44, 1.00it/s]\n 12%|█▏ | 6/50 [00:06<00:43, 1.00it/s]\n 14%|█▍ | 7/50 [00:07<00:42, 1.00it/s]\n 16%|█▌ | 8/50 [00:08<00:41, 1.00it/s]\n 18%|█▊ | 9/50 [00:09<00:40, 1.00it/s]\n 20%|██ | 10/50 [00:10<00:40, 1.00s/it]\n 22%|██▏ | 11/50 [00:11<00:39, 1.00s/it]\n 24%|██▍ | 12/50 [00:12<00:38, 1.00s/it]\n 26%|██▌ | 13/50 [00:13<00:37, 1.00s/it]\n 28%|██▊ | 14/50 [00:14<00:36, 1.01s/it]\n 30%|███ | 15/50 [00:15<00:35, 1.01s/it]\n 32%|███▏ | 16/50 [00:16<00:34, 1.01s/it]\n 34%|███▍ | 17/50 [00:17<00:33, 1.01s/it]\n 36%|███▌ | 18/50 [00:18<00:32, 1.01s/it]\n 38%|███▊ | 19/50 [00:19<00:31, 1.01s/it]\n 40%|████ | 20/50 [00:20<00:30, 1.01s/it]\n 42%|████▏ | 21/50 [00:21<00:29, 1.01s/it]\n 44%|████▍ | 22/50 [00:22<00:28, 1.01s/it]\n 46%|████▌ | 23/50 [00:23<00:27, 1.01s/it]\n 48%|████▊ | 24/50 [00:24<00:26, 1.01s/it]\n 50%|█████ | 25/50 [00:25<00:25, 1.01s/it]\n 52%|█████▏ | 26/50 [00:26<00:24, 1.01s/it]\n 54%|█████▍ | 27/50 [00:27<00:23, 1.02s/it]\n 56%|█████▌ | 28/50 [00:28<00:22, 1.01s/it]\n 58%|█████▊ | 29/50 [00:29<00:21, 1.02s/it]\n 60%|██████ | 30/50 [00:30<00:20, 1.02s/it]\n 62%|██████▏ | 31/50 [00:31<00:19, 1.02s/it]\n 64%|██████▍ | 32/50 [00:32<00:18, 1.02s/it]\n 66%|██████▌ | 33/50 [00:33<00:17, 1.02s/it]\n 68%|██████▊ | 34/50 [00:34<00:16, 1.02s/it]\n 70%|███████ | 35/50 [00:35<00:15, 1.02s/it]\n 72%|███████▏ | 36/50 [00:36<00:14, 1.03s/it]\n 74%|███████▍ | 37/50 [00:37<00:13, 1.03s/it]\n 76%|███████▌ | 38/50 [00:38<00:12, 1.03s/it]\n 78%|███████▊ | 39/50 [00:39<00:11, 1.03s/it]\n 80%|████████ | 40/50 [00:40<00:10, 1.03s/it]\n 82%|████████▏ | 41/50 [00:41<00:09, 1.03s/it]\n 84%|████████▍ | 42/50 [00:42<00:08, 1.03s/it]\n 86%|████████▌ | 43/50 [00:43<00:07, 1.03s/it]\n 88%|████████▊ | 44/50 [00:44<00:06, 1.03s/it]\n 90%|█████████ | 45/50 [00:45<00:05, 1.03s/it]\n 92%|█████████▏| 46/50 [00:46<00:04, 1.04s/it]\n 94%|█████████▍| 47/50 [00:47<00:03, 1.04s/it]\n 96%|█████████▌| 48/50 [00:48<00:02, 1.04s/it]\n 98%|█████████▊| 49/50 [00:49<00:01, 1.04s/it]\n100%|██████████| 50/50 [00:50<00:00, 1.04s/it]\n100%|██████████| 50/50 [00:50<00:00, 1.02s/it]", "metrics": { "predict_time": 55.57552, "total_time": 55.613111 }, "output": [ "https://replicate.delivery/pbxt/O4XuG06qDyIuJRPu2q0coyn7eWYjq07pI8JYES7pc68jClBIA/out-0.png", "https://replicate.delivery/pbxt/9Kg2GbCWHkJfWKZZLKJ5LZUQhHgKvfgfJGjEuqo7Ug2PKUGgA/out-1.png", "https://replicate.delivery/pbxt/RGnVCKog3nIsEZeeA4eTrNcRXK1UGlfOlKIvo1bqPFpjUoMAB/out-2.png", "https://replicate.delivery/pbxt/I3PsfCVJEtxRPS3JItYi3nLZ7sJcItlrxHu3aVKYCVtkClBIA/out-3.png" ], "started_at": "2022-11-24T04:12:02.474089Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3z2y57ngf5b4jblysjkhzxv5wu", "cancel": "https://api.replicate.com/v1/predictions/3z2y57ngf5b4jblysjkhzxv5wu/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 35940 Global seed set to 35940 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:51, 1.05s/it] 4%|▍ | 2/50 [00:02<00:48, 1.02s/it] 6%|▌ | 3/50 [00:03<00:47, 1.01s/it] 8%|▊ | 4/50 [00:04<00:46, 1.00s/it] 10%|█ | 5/50 [00:05<00:44, 1.00it/s] 12%|█▏ | 6/50 [00:06<00:43, 1.00it/s] 14%|█▍ | 7/50 [00:07<00:42, 1.00it/s] 16%|█▌ | 8/50 [00:08<00:41, 1.00it/s] 18%|█▊ | 9/50 [00:09<00:40, 1.00it/s] 20%|██ | 10/50 [00:10<00:40, 1.00s/it] 22%|██▏ | 11/50 [00:11<00:39, 1.00s/it] 24%|██▍ | 12/50 [00:12<00:38, 1.00s/it] 26%|██▌ | 13/50 [00:13<00:37, 1.00s/it] 28%|██▊ | 14/50 [00:14<00:36, 1.01s/it] 30%|███ | 15/50 [00:15<00:35, 1.01s/it] 32%|███▏ | 16/50 [00:16<00:34, 1.01s/it] 34%|███▍ | 17/50 [00:17<00:33, 1.01s/it] 36%|███▌ | 18/50 [00:18<00:32, 1.01s/it] 38%|███▊ | 19/50 [00:19<00:31, 1.01s/it] 40%|████ | 20/50 [00:20<00:30, 1.01s/it] 42%|████▏ | 21/50 [00:21<00:29, 1.01s/it] 44%|████▍ | 22/50 [00:22<00:28, 1.01s/it] 46%|████▌ | 23/50 [00:23<00:27, 1.01s/it] 48%|████▊ | 24/50 [00:24<00:26, 1.01s/it] 50%|█████ | 25/50 [00:25<00:25, 1.01s/it] 52%|█████▏ | 26/50 [00:26<00:24, 1.01s/it] 54%|█████▍ | 27/50 [00:27<00:23, 1.02s/it] 56%|█████▌ | 28/50 [00:28<00:22, 1.01s/it] 58%|█████▊ | 29/50 [00:29<00:21, 1.02s/it] 60%|██████ | 30/50 [00:30<00:20, 1.02s/it] 62%|██████▏ | 31/50 [00:31<00:19, 1.02s/it] 64%|██████▍ | 32/50 [00:32<00:18, 1.02s/it] 66%|██████▌ | 33/50 [00:33<00:17, 1.02s/it] 68%|██████▊ | 34/50 [00:34<00:16, 1.02s/it] 70%|███████ | 35/50 [00:35<00:15, 1.02s/it] 72%|███████▏ | 36/50 [00:36<00:14, 1.03s/it] 74%|███████▍ | 37/50 [00:37<00:13, 1.03s/it] 76%|███████▌ | 38/50 [00:38<00:12, 1.03s/it] 78%|███████▊ | 39/50 [00:39<00:11, 1.03s/it] 80%|████████ | 40/50 [00:40<00:10, 1.03s/it] 82%|████████▏ | 41/50 [00:41<00:09, 1.03s/it] 84%|████████▍ | 42/50 [00:42<00:08, 1.03s/it] 86%|████████▌ | 43/50 [00:43<00:07, 1.03s/it] 88%|████████▊ | 44/50 [00:44<00:06, 1.03s/it] 90%|█████████ | 45/50 [00:45<00:05, 1.03s/it] 92%|█████████▏| 46/50 [00:46<00:04, 1.04s/it] 94%|█████████▍| 47/50 [00:47<00:03, 1.04s/it] 96%|█████████▌| 48/50 [00:48<00:02, 1.04s/it] 98%|█████████▊| 49/50 [00:49<00:01, 1.04s/it] 100%|██████████| 50/50 [00:50<00:00, 1.04s/it] 100%|██████████| 50/50 [00:50<00:00, 1.02s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587ID73voafnjorbl5lvcoyxhhnx5mmStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, cannabis leaf
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, cannabis leaf", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, cannabis leaf", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, cannabis leaf", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, cannabis leaf", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T05:46:24.475706Z", "created_at": "2022-11-24T05:43:57.228473Z", "data_removed": false, "error": null, "id": "73voafnjorbl5lvcoyxhhnx5mm", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, cannabis leaf", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 48574\nGlobal seed set to 48574\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:52, 1.06s/it]\n 4%|▍ | 2/50 [00:02<00:50, 1.06s/it]\n 6%|▌ | 3/50 [00:03<00:49, 1.05s/it]\n 8%|▊ | 4/50 [00:04<00:48, 1.05s/it]\n 10%|█ | 5/50 [00:05<00:47, 1.05s/it]\n 12%|█▏ | 6/50 [00:06<00:46, 1.05s/it]\n 14%|█▍ | 7/50 [00:07<00:45, 1.05s/it]\n 16%|█▌ | 8/50 [00:08<00:44, 1.05s/it]\n 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it]\n 20%|██ | 10/50 [00:10<00:42, 1.05s/it]\n 22%|██▏ | 11/50 [00:11<00:41, 1.05s/it]\n 24%|██▍ | 12/50 [00:12<00:40, 1.05s/it]\n 26%|██▌ | 13/50 [00:13<00:38, 1.05s/it]\n 28%|██▊ | 14/50 [00:14<00:37, 1.05s/it]\n 30%|███ | 15/50 [00:15<00:36, 1.05s/it]\n 32%|███▏ | 16/50 [00:16<00:35, 1.05s/it]\n 34%|███▍ | 17/50 [00:17<00:34, 1.05s/it]\n 36%|███▌ | 18/50 [00:18<00:33, 1.05s/it]\n 38%|███▊ | 19/50 [00:19<00:32, 1.04s/it]\n 40%|████ | 20/50 [00:20<00:31, 1.04s/it]\n 42%|████▏ | 21/50 [00:22<00:30, 1.04s/it]\n 44%|████▍ | 22/50 [00:23<00:29, 1.04s/it]\n 46%|████▌ | 23/50 [00:24<00:27, 1.03s/it]\n 48%|████▊ | 24/50 [00:25<00:26, 1.03s/it]\n 50%|█████ | 25/50 [00:26<00:25, 1.03s/it]\n 52%|█████▏ | 26/50 [00:27<00:24, 1.03s/it]\n 54%|█████▍ | 27/50 [00:28<00:23, 1.03s/it]\n 56%|█████▌ | 28/50 [00:29<00:22, 1.03s/it]\n 58%|█████▊ | 29/50 [00:30<00:21, 1.03s/it]\n 60%|██████ | 30/50 [00:31<00:20, 1.03s/it]\n 62%|██████▏ | 31/50 [00:32<00:19, 1.03s/it]\n 64%|██████▍ | 32/50 [00:33<00:18, 1.02s/it]\n 66%|██████▌ | 33/50 [00:34<00:17, 1.02s/it]\n 68%|██████▊ | 34/50 [00:35<00:16, 1.02s/it]\n 70%|███████ | 35/50 [00:36<00:15, 1.02s/it]\n 72%|███████▏ | 36/50 [00:37<00:14, 1.02s/it]\n 74%|███████▍ | 37/50 [00:38<00:13, 1.02s/it]\n 76%|███████▌ | 38/50 [00:39<00:12, 1.02s/it]\n 78%|███████▊ | 39/50 [00:40<00:11, 1.02s/it]\n 80%|████████ | 40/50 [00:41<00:10, 1.02s/it]\n 82%|████████▏ | 41/50 [00:42<00:09, 1.01s/it]\n 84%|████████▍ | 42/50 [00:43<00:08, 1.01s/it]\n 86%|████████▌ | 43/50 [00:44<00:07, 1.01s/it]\n 88%|████████▊ | 44/50 [00:45<00:06, 1.01s/it]\n 90%|█████████ | 45/50 [00:46<00:05, 1.01s/it]\n 92%|█████████▏| 46/50 [00:47<00:04, 1.01s/it]\n 94%|█████████▍| 47/50 [00:48<00:03, 1.01s/it]\n 96%|█████████▌| 48/50 [00:49<00:02, 1.01s/it]\n 98%|█████████▊| 49/50 [00:50<00:01, 1.01s/it]\n100%|██████████| 50/50 [00:51<00:00, 1.01s/it]\n100%|██████████| 50/50 [00:51<00:00, 1.03s/it]", "metrics": { "predict_time": 55.069517, "total_time": 147.247233 }, "output": [ "https://replicate.delivery/pbxt/zdu6lbsqV3IuB53AeqlQnxXegDH46ZGVUQe2f1T3ZM05ytMAB/out-0.png", "https://replicate.delivery/pbxt/cGjRSjLZ347hBFScGBrQ9JreyiaeNT9eqXBl10DbsYHfytMAB/out-1.png", "https://replicate.delivery/pbxt/1eLZbAag7wWeU0MNEyRa7fnd4Xi8pPSGBiFe1eR3Qk47lbZAC/out-2.png", "https://replicate.delivery/pbxt/nPeZPN2syKwae0x38IFSoFRGFw85XfPzj4lgt8pjOde8ytMAB/out-3.png" ], "started_at": "2022-11-24T05:45:29.406189Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/73voafnjorbl5lvcoyxhhnx5mm", "cancel": "https://api.replicate.com/v1/predictions/73voafnjorbl5lvcoyxhhnx5mm/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 48574 Global seed set to 48574 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:52, 1.06s/it] 4%|▍ | 2/50 [00:02<00:50, 1.06s/it] 6%|▌ | 3/50 [00:03<00:49, 1.05s/it] 8%|▊ | 4/50 [00:04<00:48, 1.05s/it] 10%|█ | 5/50 [00:05<00:47, 1.05s/it] 12%|█▏ | 6/50 [00:06<00:46, 1.05s/it] 14%|█▍ | 7/50 [00:07<00:45, 1.05s/it] 16%|█▌ | 8/50 [00:08<00:44, 1.05s/it] 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it] 20%|██ | 10/50 [00:10<00:42, 1.05s/it] 22%|██▏ | 11/50 [00:11<00:41, 1.05s/it] 24%|██▍ | 12/50 [00:12<00:40, 1.05s/it] 26%|██▌ | 13/50 [00:13<00:38, 1.05s/it] 28%|██▊ | 14/50 [00:14<00:37, 1.05s/it] 30%|███ | 15/50 [00:15<00:36, 1.05s/it] 32%|███▏ | 16/50 [00:16<00:35, 1.05s/it] 34%|███▍ | 17/50 [00:17<00:34, 1.05s/it] 36%|███▌ | 18/50 [00:18<00:33, 1.05s/it] 38%|███▊ | 19/50 [00:19<00:32, 1.04s/it] 40%|████ | 20/50 [00:20<00:31, 1.04s/it] 42%|████▏ | 21/50 [00:22<00:30, 1.04s/it] 44%|████▍ | 22/50 [00:23<00:29, 1.04s/it] 46%|████▌ | 23/50 [00:24<00:27, 1.03s/it] 48%|████▊ | 24/50 [00:25<00:26, 1.03s/it] 50%|█████ | 25/50 [00:26<00:25, 1.03s/it] 52%|█████▏ | 26/50 [00:27<00:24, 1.03s/it] 54%|█████▍ | 27/50 [00:28<00:23, 1.03s/it] 56%|█████▌ | 28/50 [00:29<00:22, 1.03s/it] 58%|█████▊ | 29/50 [00:30<00:21, 1.03s/it] 60%|██████ | 30/50 [00:31<00:20, 1.03s/it] 62%|██████▏ | 31/50 [00:32<00:19, 1.03s/it] 64%|██████▍ | 32/50 [00:33<00:18, 1.02s/it] 66%|██████▌ | 33/50 [00:34<00:17, 1.02s/it] 68%|██████▊ | 34/50 [00:35<00:16, 1.02s/it] 70%|███████ | 35/50 [00:36<00:15, 1.02s/it] 72%|███████▏ | 36/50 [00:37<00:14, 1.02s/it] 74%|███████▍ | 37/50 [00:38<00:13, 1.02s/it] 76%|███████▌ | 38/50 [00:39<00:12, 1.02s/it] 78%|███████▊ | 39/50 [00:40<00:11, 1.02s/it] 80%|████████ | 40/50 [00:41<00:10, 1.02s/it] 82%|████████▏ | 41/50 [00:42<00:09, 1.01s/it] 84%|████████▍ | 42/50 [00:43<00:08, 1.01s/it] 86%|████████▌ | 43/50 [00:44<00:07, 1.01s/it] 88%|████████▊ | 44/50 [00:45<00:06, 1.01s/it] 90%|█████████ | 45/50 [00:46<00:05, 1.01s/it] 92%|█████████▏| 46/50 [00:47<00:04, 1.01s/it] 94%|█████████▍| 47/50 [00:48<00:03, 1.01s/it] 96%|█████████▌| 48/50 [00:49<00:02, 1.01s/it] 98%|█████████▊| 49/50 [00:50<00:01, 1.01s/it] 100%|██████████| 50/50 [00:51<00:00, 1.01s/it] 100%|██████████| 50/50 [00:51<00:00, 1.03s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDw5vqkgpigvdpjnokdf2dju6iliStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, cannabis leaf
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, cannabis leaf", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, cannabis leaf", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, cannabis leaf", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, cannabis leaf", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T05:53:17.300586Z", "created_at": "2022-11-24T05:51:29.439427Z", "data_removed": false, "error": null, "id": "w5vqkgpigvdpjnokdf2dju6ili", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, cannabis leaf", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 37840\nGlobal seed set to 37840\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:53, 1.08s/it]\n 4%|▍ | 2/50 [00:02<00:50, 1.06s/it]\n 6%|▌ | 3/50 [00:03<00:49, 1.04s/it]\n 8%|▊ | 4/50 [00:04<00:47, 1.04s/it]\n 10%|█ | 5/50 [00:05<00:46, 1.04s/it]\n 12%|█▏ | 6/50 [00:06<00:45, 1.04s/it]\n 14%|█▍ | 7/50 [00:07<00:44, 1.04s/it]\n 16%|█▌ | 8/50 [00:08<00:43, 1.04s/it]\n 18%|█▊ | 9/50 [00:09<00:42, 1.04s/it]\n 20%|██ | 10/50 [00:10<00:41, 1.04s/it]\n 22%|██▏ | 11/50 [00:11<00:40, 1.04s/it]\n 24%|██▍ | 12/50 [00:12<00:39, 1.05s/it]\n 26%|██▌ | 13/50 [00:13<00:38, 1.05s/it]\n 28%|██▊ | 14/50 [00:14<00:37, 1.05s/it]\n 30%|███ | 15/50 [00:15<00:36, 1.05s/it]\n 32%|███▏ | 16/50 [00:16<00:35, 1.05s/it]\n 34%|███▍ | 17/50 [00:17<00:34, 1.06s/it]\n 36%|███▌ | 18/50 [00:18<00:33, 1.06s/it]\n 38%|███▊ | 19/50 [00:19<00:32, 1.06s/it]\n 40%|████ | 20/50 [00:21<00:31, 1.06s/it]\n 42%|████▏ | 21/50 [00:22<00:30, 1.07s/it]\n 44%|████▍ | 22/50 [00:23<00:29, 1.07s/it]\n 46%|████▌ | 23/50 [00:24<00:28, 1.07s/it]\n 48%|████▊ | 24/50 [00:25<00:27, 1.07s/it]\n 50%|█████ | 25/50 [00:26<00:26, 1.08s/it]\n 52%|█████▏ | 26/50 [00:27<00:25, 1.08s/it]\n 54%|█████▍ | 27/50 [00:28<00:24, 1.08s/it]\n 56%|█████▌ | 28/50 [00:29<00:23, 1.08s/it]\n 58%|█████▊ | 29/50 [00:30<00:22, 1.09s/it]\n 60%|██████ | 30/50 [00:31<00:21, 1.09s/it]\n 62%|██████▏ | 31/50 [00:32<00:20, 1.09s/it]\n 64%|██████▍ | 32/50 [00:34<00:19, 1.09s/it]\n 66%|██████▌ | 33/50 [00:35<00:18, 1.09s/it]\n 68%|██████▊ | 34/50 [00:36<00:17, 1.10s/it]\n 70%|███████ | 35/50 [00:37<00:16, 1.10s/it]\n 72%|███████▏ | 36/50 [00:38<00:15, 1.10s/it]\n 74%|███████▍ | 37/50 [00:39<00:14, 1.11s/it]\n 76%|███████▌ | 38/50 [00:40<00:13, 1.11s/it]\n 78%|███████▊ | 39/50 [00:41<00:12, 1.11s/it]\n 80%|████████ | 40/50 [00:42<00:11, 1.11s/it]\n 82%|████████▏ | 41/50 [00:44<00:10, 1.12s/it]\n 84%|████████▍ | 42/50 [00:45<00:08, 1.12s/it]\n 86%|████████▌ | 43/50 [00:46<00:07, 1.12s/it]\n 88%|████████▊ | 44/50 [00:47<00:06, 1.12s/it]\n 90%|█████████ | 45/50 [00:48<00:05, 1.12s/it]\n 92%|█████████▏| 46/50 [00:49<00:04, 1.12s/it]\n 94%|█████████▍| 47/50 [00:50<00:03, 1.12s/it]\n 96%|█████████▌| 48/50 [00:51<00:02, 1.11s/it]\n 98%|█████████▊| 49/50 [00:52<00:01, 1.11s/it]\n100%|██████████| 50/50 [00:54<00:00, 1.10s/it]\n100%|██████████| 50/50 [00:54<00:00, 1.08s/it]", "metrics": { "predict_time": 58.721526, "total_time": 107.861159 }, "output": [ "https://replicate.delivery/pbxt/Gb84DEvtKIKOPdZDQV1zvyfWFxitCIh3vHXyHGeffFypMuMAB/out-0.png", "https://replicate.delivery/pbxt/FvaMq1AVITYNApmwNYTdmYAmLC5zubwRVa1B3OYz9byy4yAE/out-1.png", "https://replicate.delivery/pbxt/RFtlzSA8ykaMKF7M0YHbbCZkILVAMTwqkzN0PXns0N5y4yAE/out-2.png", "https://replicate.delivery/pbxt/BtUdiAzZoSqVLR2dXfkm0NNJEUEx0fQa4we0dNB4BI6ZGXGgA/out-3.png" ], "started_at": "2022-11-24T05:52:18.579060Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/w5vqkgpigvdpjnokdf2dju6ili", "cancel": "https://api.replicate.com/v1/predictions/w5vqkgpigvdpjnokdf2dju6ili/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 37840 Global seed set to 37840 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:53, 1.08s/it] 4%|▍ | 2/50 [00:02<00:50, 1.06s/it] 6%|▌ | 3/50 [00:03<00:49, 1.04s/it] 8%|▊ | 4/50 [00:04<00:47, 1.04s/it] 10%|█ | 5/50 [00:05<00:46, 1.04s/it] 12%|█▏ | 6/50 [00:06<00:45, 1.04s/it] 14%|█▍ | 7/50 [00:07<00:44, 1.04s/it] 16%|█▌ | 8/50 [00:08<00:43, 1.04s/it] 18%|█▊ | 9/50 [00:09<00:42, 1.04s/it] 20%|██ | 10/50 [00:10<00:41, 1.04s/it] 22%|██▏ | 11/50 [00:11<00:40, 1.04s/it] 24%|██▍ | 12/50 [00:12<00:39, 1.05s/it] 26%|██▌ | 13/50 [00:13<00:38, 1.05s/it] 28%|██▊ | 14/50 [00:14<00:37, 1.05s/it] 30%|███ | 15/50 [00:15<00:36, 1.05s/it] 32%|███▏ | 16/50 [00:16<00:35, 1.05s/it] 34%|███▍ | 17/50 [00:17<00:34, 1.06s/it] 36%|███▌ | 18/50 [00:18<00:33, 1.06s/it] 38%|███▊ | 19/50 [00:19<00:32, 1.06s/it] 40%|████ | 20/50 [00:21<00:31, 1.06s/it] 42%|████▏ | 21/50 [00:22<00:30, 1.07s/it] 44%|████▍ | 22/50 [00:23<00:29, 1.07s/it] 46%|████▌ | 23/50 [00:24<00:28, 1.07s/it] 48%|████▊ | 24/50 [00:25<00:27, 1.07s/it] 50%|█████ | 25/50 [00:26<00:26, 1.08s/it] 52%|█████▏ | 26/50 [00:27<00:25, 1.08s/it] 54%|█████▍ | 27/50 [00:28<00:24, 1.08s/it] 56%|█████▌ | 28/50 [00:29<00:23, 1.08s/it] 58%|█████▊ | 29/50 [00:30<00:22, 1.09s/it] 60%|██████ | 30/50 [00:31<00:21, 1.09s/it] 62%|██████▏ | 31/50 [00:32<00:20, 1.09s/it] 64%|██████▍ | 32/50 [00:34<00:19, 1.09s/it] 66%|██████▌ | 33/50 [00:35<00:18, 1.09s/it] 68%|██████▊ | 34/50 [00:36<00:17, 1.10s/it] 70%|███████ | 35/50 [00:37<00:16, 1.10s/it] 72%|███████▏ | 36/50 [00:38<00:15, 1.10s/it] 74%|███████▍ | 37/50 [00:39<00:14, 1.11s/it] 76%|███████▌ | 38/50 [00:40<00:13, 1.11s/it] 78%|███████▊ | 39/50 [00:41<00:12, 1.11s/it] 80%|████████ | 40/50 [00:42<00:11, 1.11s/it] 82%|████████▏ | 41/50 [00:44<00:10, 1.12s/it] 84%|████████▍ | 42/50 [00:45<00:08, 1.12s/it] 86%|████████▌ | 43/50 [00:46<00:07, 1.12s/it] 88%|████████▊ | 44/50 [00:47<00:06, 1.12s/it] 90%|█████████ | 45/50 [00:48<00:05, 1.12s/it] 92%|█████████▏| 46/50 [00:49<00:04, 1.12s/it] 94%|█████████▍| 47/50 [00:50<00:03, 1.12s/it] 96%|█████████▌| 48/50 [00:51<00:02, 1.11s/it] 98%|█████████▊| 49/50 [00:52<00:01, 1.11s/it] 100%|██████████| 50/50 [00:54<00:00, 1.10s/it] 100%|██████████| 50/50 [00:54<00:00, 1.08s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDs3qcdayqozafjhlwep2gqij3hyStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, bee
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, bee", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, bee", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, bee", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, bee", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T07:16:18.101648Z", "created_at": "2022-11-24T07:15:22.990887Z", "data_removed": false, "error": null, "id": "s3qcdayqozafjhlwep2gqij3hy", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, bee", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 57157\nGlobal seed set to 57157\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:49, 1.01s/it]\n 4%|▍ | 2/50 [00:01<00:47, 1.01it/s]\n 6%|▌ | 3/50 [00:02<00:46, 1.01it/s]\n 8%|▊ | 4/50 [00:03<00:45, 1.01it/s]\n 10%|█ | 5/50 [00:04<00:44, 1.01it/s]\n 12%|█▏ | 6/50 [00:05<00:43, 1.01it/s]\n 14%|█▍ | 7/50 [00:06<00:42, 1.01it/s]\n 16%|█▌ | 8/50 [00:07<00:41, 1.01it/s]\n 18%|█▊ | 9/50 [00:08<00:40, 1.01it/s]\n 20%|██ | 10/50 [00:09<00:39, 1.01it/s]\n 22%|██▏ | 11/50 [00:10<00:38, 1.01it/s]\n 24%|██▍ | 12/50 [00:11<00:37, 1.01it/s]\n 26%|██▌ | 13/50 [00:12<00:36, 1.01it/s]\n 28%|██▊ | 14/50 [00:13<00:35, 1.01it/s]\n 30%|███ | 15/50 [00:14<00:34, 1.01it/s]\n 32%|███▏ | 16/50 [00:15<00:33, 1.01it/s]\n 34%|███▍ | 17/50 [00:16<00:32, 1.01it/s]\n 36%|███▌ | 18/50 [00:17<00:31, 1.00it/s]\n 38%|███▊ | 19/50 [00:18<00:31, 1.00s/it]\n 40%|████ | 20/50 [00:19<00:30, 1.00s/it]\n 42%|████▏ | 21/50 [00:20<00:29, 1.01s/it]\n 44%|████▍ | 22/50 [00:21<00:28, 1.01s/it]\n 46%|████▌ | 23/50 [00:22<00:27, 1.01s/it]\n 48%|████▊ | 24/50 [00:23<00:26, 1.01s/it]\n 50%|█████ | 25/50 [00:24<00:25, 1.01s/it]\n 52%|█████▏ | 26/50 [00:25<00:24, 1.01s/it]\n 54%|█████▍ | 27/50 [00:27<00:23, 1.02s/it]\n 56%|█████▌ | 28/50 [00:28<00:22, 1.02s/it]\n 58%|█████▊ | 29/50 [00:29<00:21, 1.02s/it]\n 60%|██████ | 30/50 [00:30<00:20, 1.03s/it]\n 62%|██████▏ | 31/50 [00:31<00:19, 1.03s/it]\n 64%|██████▍ | 32/50 [00:32<00:18, 1.03s/it]\n 66%|██████▌ | 33/50 [00:33<00:17, 1.03s/it]\n 68%|██████▊ | 34/50 [00:34<00:16, 1.03s/it]\n 70%|███████ | 35/50 [00:35<00:15, 1.03s/it]\n 72%|███████▏ | 36/50 [00:36<00:14, 1.04s/it]\n 74%|███████▍ | 37/50 [00:37<00:13, 1.03s/it]\n 76%|███████▌ | 38/50 [00:38<00:12, 1.03s/it]\n 78%|███████▊ | 39/50 [00:39<00:11, 1.04s/it]\n 80%|████████ | 40/50 [00:40<00:10, 1.04s/it]\n 82%|████████▏ | 41/50 [00:41<00:09, 1.04s/it]\n 84%|████████▍ | 42/50 [00:42<00:08, 1.04s/it]\n 86%|████████▌ | 43/50 [00:43<00:07, 1.04s/it]\n 88%|████████▊ | 44/50 [00:44<00:06, 1.04s/it]\n 90%|█████████ | 45/50 [00:45<00:05, 1.05s/it]\n 92%|█████████▏| 46/50 [00:46<00:04, 1.05s/it]\n 94%|█████████▍| 47/50 [00:47<00:03, 1.05s/it]\n 96%|█████████▌| 48/50 [00:48<00:02, 1.05s/it]\n 98%|█████████▊| 49/50 [00:49<00:01, 1.05s/it]\n100%|██████████| 50/50 [00:50<00:00, 1.05s/it]\n100%|██████████| 50/50 [00:50<00:00, 1.02s/it]", "metrics": { "predict_time": 55.074707, "total_time": 55.110761 }, "output": [ "https://replicate.delivery/pbxt/cCZf9IfbT4l8lEbI8PQUPN9ABJr1itEZxF3sfBurfer7HmZAC/out-0.png", "https://replicate.delivery/pbxt/K6EOWymODnaVBteIK2WNOIPaTeCIEAcJFPdmWwJHukHAxMDQA/out-1.png", "https://replicate.delivery/pbxt/SPFezs3t9GyQE6v8YsrzoRT4fk0bVZdek11KIxnftsGHEzMAB/out-2.png", "https://replicate.delivery/pbxt/VBFpdYRfAOzXXCr0W1emZnjbDf5C4Cl8BJMF1LjenfONImZAC/out-3.png" ], "started_at": "2022-11-24T07:15:23.026941Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/s3qcdayqozafjhlwep2gqij3hy", "cancel": "https://api.replicate.com/v1/predictions/s3qcdayqozafjhlwep2gqij3hy/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 57157 Global seed set to 57157 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:49, 1.01s/it] 4%|▍ | 2/50 [00:01<00:47, 1.01it/s] 6%|▌ | 3/50 [00:02<00:46, 1.01it/s] 8%|▊ | 4/50 [00:03<00:45, 1.01it/s] 10%|█ | 5/50 [00:04<00:44, 1.01it/s] 12%|█▏ | 6/50 [00:05<00:43, 1.01it/s] 14%|█▍ | 7/50 [00:06<00:42, 1.01it/s] 16%|█▌ | 8/50 [00:07<00:41, 1.01it/s] 18%|█▊ | 9/50 [00:08<00:40, 1.01it/s] 20%|██ | 10/50 [00:09<00:39, 1.01it/s] 22%|██▏ | 11/50 [00:10<00:38, 1.01it/s] 24%|██▍ | 12/50 [00:11<00:37, 1.01it/s] 26%|██▌ | 13/50 [00:12<00:36, 1.01it/s] 28%|██▊ | 14/50 [00:13<00:35, 1.01it/s] 30%|███ | 15/50 [00:14<00:34, 1.01it/s] 32%|███▏ | 16/50 [00:15<00:33, 1.01it/s] 34%|███▍ | 17/50 [00:16<00:32, 1.01it/s] 36%|███▌ | 18/50 [00:17<00:31, 1.00it/s] 38%|███▊ | 19/50 [00:18<00:31, 1.00s/it] 40%|████ | 20/50 [00:19<00:30, 1.00s/it] 42%|████▏ | 21/50 [00:20<00:29, 1.01s/it] 44%|████▍ | 22/50 [00:21<00:28, 1.01s/it] 46%|████▌ | 23/50 [00:22<00:27, 1.01s/it] 48%|████▊ | 24/50 [00:23<00:26, 1.01s/it] 50%|█████ | 25/50 [00:24<00:25, 1.01s/it] 52%|█████▏ | 26/50 [00:25<00:24, 1.01s/it] 54%|█████▍ | 27/50 [00:27<00:23, 1.02s/it] 56%|█████▌ | 28/50 [00:28<00:22, 1.02s/it] 58%|█████▊ | 29/50 [00:29<00:21, 1.02s/it] 60%|██████ | 30/50 [00:30<00:20, 1.03s/it] 62%|██████▏ | 31/50 [00:31<00:19, 1.03s/it] 64%|██████▍ | 32/50 [00:32<00:18, 1.03s/it] 66%|██████▌ | 33/50 [00:33<00:17, 1.03s/it] 68%|██████▊ | 34/50 [00:34<00:16, 1.03s/it] 70%|███████ | 35/50 [00:35<00:15, 1.03s/it] 72%|███████▏ | 36/50 [00:36<00:14, 1.04s/it] 74%|███████▍ | 37/50 [00:37<00:13, 1.03s/it] 76%|███████▌ | 38/50 [00:38<00:12, 1.03s/it] 78%|███████▊ | 39/50 [00:39<00:11, 1.04s/it] 80%|████████ | 40/50 [00:40<00:10, 1.04s/it] 82%|████████▏ | 41/50 [00:41<00:09, 1.04s/it] 84%|████████▍ | 42/50 [00:42<00:08, 1.04s/it] 86%|████████▌ | 43/50 [00:43<00:07, 1.04s/it] 88%|████████▊ | 44/50 [00:44<00:06, 1.04s/it] 90%|█████████ | 45/50 [00:45<00:05, 1.05s/it] 92%|█████████▏| 46/50 [00:46<00:04, 1.05s/it] 94%|█████████▍| 47/50 [00:47<00:03, 1.05s/it] 96%|█████████▌| 48/50 [00:48<00:02, 1.05s/it] 98%|█████████▊| 49/50 [00:49<00:01, 1.05s/it] 100%|██████████| 50/50 [00:50<00:00, 1.05s/it] 100%|██████████| 50/50 [00:50<00:00, 1.02s/it]
Prediction
myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587IDowk3dvxs5jcmreme4bhylq7wsaStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- md4 antiquemetal, bee
- num_outputs
- "4"
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "md4 antiquemetal, bee", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", { input: { width: 512, height: 512, prompt: "md4 antiquemetal, bee", num_outputs: "4", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", input={ "width": 512, "height": 512, "prompt": "md4 antiquemetal, bee", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run myaiteam2/antiquemetalcreator using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "myaiteam2/antiquemetalcreator:e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, bee", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-11-24T07:19:18.000362Z", "created_at": "2022-11-24T07:17:33.526375Z", "data_removed": false, "error": null, "id": "owk3dvxs5jcmreme4bhylq7wsa", "input": { "width": 512, "height": 512, "prompt": "md4 antiquemetal, bee", "num_outputs": "4", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Loading pipeline...\nUsing seed: 14736\nGlobal seed set to 14736\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:52, 1.07s/it]\n 4%|▍ | 2/50 [00:02<00:50, 1.04s/it]\n 6%|▌ | 3/50 [00:03<00:48, 1.03s/it]\n 8%|▊ | 4/50 [00:04<00:47, 1.03s/it]\n 10%|█ | 5/50 [00:05<00:46, 1.03s/it]\n 12%|█▏ | 6/50 [00:06<00:45, 1.03s/it]\n 14%|█▍ | 7/50 [00:07<00:44, 1.03s/it]\n 16%|█▌ | 8/50 [00:08<00:43, 1.03s/it]\n 18%|█▊ | 9/50 [00:09<00:42, 1.03s/it]\n 20%|██ | 10/50 [00:10<00:41, 1.03s/it]\n 22%|██▏ | 11/50 [00:11<00:40, 1.03s/it]\n 24%|██▍ | 12/50 [00:12<00:39, 1.03s/it]\n 26%|██▌ | 13/50 [00:13<00:38, 1.03s/it]\n 28%|██▊ | 14/50 [00:14<00:37, 1.03s/it]\n 30%|███ | 15/50 [00:15<00:36, 1.03s/it]\n 32%|███▏ | 16/50 [00:16<00:35, 1.03s/it]\n 34%|███▍ | 17/50 [00:17<00:34, 1.03s/it]\n 36%|███▌ | 18/50 [00:18<00:33, 1.04s/it]\n 38%|███▊ | 19/50 [00:19<00:32, 1.04s/it]\n 40%|████ | 20/50 [00:20<00:31, 1.04s/it]\n 42%|████▏ | 21/50 [00:21<00:30, 1.04s/it]\n 44%|████▍ | 22/50 [00:22<00:29, 1.04s/it]\n 46%|████▌ | 23/50 [00:23<00:28, 1.04s/it]\n 48%|████▊ | 24/50 [00:24<00:27, 1.05s/it]\n 50%|█████ | 25/50 [00:25<00:26, 1.05s/it]\n 52%|█████▏ | 26/50 [00:26<00:25, 1.05s/it]\n 54%|█████▍ | 27/50 [00:28<00:24, 1.05s/it]\n 56%|█████▌ | 28/50 [00:29<00:23, 1.05s/it]\n 58%|█████▊ | 29/50 [00:30<00:22, 1.05s/it]\n 60%|██████ | 30/50 [00:31<00:21, 1.05s/it]\n 62%|██████▏ | 31/50 [00:32<00:19, 1.05s/it]\n 64%|██████▍ | 32/50 [00:33<00:18, 1.05s/it]\n 66%|██████▌ | 33/50 [00:34<00:17, 1.05s/it]\n 68%|██████▊ | 34/50 [00:35<00:16, 1.05s/it]\n 70%|███████ | 35/50 [00:36<00:15, 1.05s/it]\n 72%|███████▏ | 36/50 [00:37<00:14, 1.06s/it]\n 74%|███████▍ | 37/50 [00:38<00:13, 1.06s/it]\n 76%|███████▌ | 38/50 [00:39<00:12, 1.06s/it]\n 78%|███████▊ | 39/50 [00:40<00:11, 1.06s/it]\n 80%|████████ | 40/50 [00:41<00:10, 1.06s/it]\n 82%|████████▏ | 41/50 [00:42<00:09, 1.06s/it]\n 84%|████████▍ | 42/50 [00:43<00:08, 1.06s/it]\n 86%|████████▌ | 43/50 [00:44<00:07, 1.06s/it]\n 88%|████████▊ | 44/50 [00:45<00:06, 1.06s/it]\n 90%|█████████ | 45/50 [00:47<00:05, 1.06s/it]\n 92%|█████████▏| 46/50 [00:48<00:04, 1.06s/it]\n 94%|█████████▍| 47/50 [00:49<00:03, 1.07s/it]\n 96%|█████████▌| 48/50 [00:50<00:02, 1.07s/it]\n 98%|█████████▊| 49/50 [00:51<00:01, 1.07s/it]\n100%|██████████| 50/50 [00:52<00:00, 1.07s/it]\n100%|██████████| 50/50 [00:52<00:00, 1.05s/it]", "metrics": { "predict_time": 56.353909, "total_time": 104.473987 }, "output": [ "https://replicate.delivery/pbxt/pQrB6AGFjC4PLZcVdEuT6LkImzQHdyTOOQtMFZfuwpx5ZmBIA/out-0.png", "https://replicate.delivery/pbxt/faHCB3kt6ftN1EAevlVhOexOeejfnwohwuGvKbiw4eS10zMDQA/out-1.png", "https://replicate.delivery/pbxt/jt751G7E8fV8HaK8YV6emvhiCaVYwOWgQMetzUID6DeWPzMAB/out-2.png", "https://replicate.delivery/pbxt/tdsRwdgUexzfhk9NUKjncmw2MxeMHHO4nAeQIt4aDvNVPzMAB/out-3.png" ], "started_at": "2022-11-24T07:18:21.646453Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/owk3dvxs5jcmreme4bhylq7wsa", "cancel": "https://api.replicate.com/v1/predictions/owk3dvxs5jcmreme4bhylq7wsa/cancel" }, "version": "e270162b88240dc69898a87a63b37985bc2c1ffb27a8e9b617ba0c1574ffc587" }
Generated inLoading pipeline... Using seed: 14736 Global seed set to 14736 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:52, 1.07s/it] 4%|▍ | 2/50 [00:02<00:50, 1.04s/it] 6%|▌ | 3/50 [00:03<00:48, 1.03s/it] 8%|▊ | 4/50 [00:04<00:47, 1.03s/it] 10%|█ | 5/50 [00:05<00:46, 1.03s/it] 12%|█▏ | 6/50 [00:06<00:45, 1.03s/it] 14%|█▍ | 7/50 [00:07<00:44, 1.03s/it] 16%|█▌ | 8/50 [00:08<00:43, 1.03s/it] 18%|█▊ | 9/50 [00:09<00:42, 1.03s/it] 20%|██ | 10/50 [00:10<00:41, 1.03s/it] 22%|██▏ | 11/50 [00:11<00:40, 1.03s/it] 24%|██▍ | 12/50 [00:12<00:39, 1.03s/it] 26%|██▌ | 13/50 [00:13<00:38, 1.03s/it] 28%|██▊ | 14/50 [00:14<00:37, 1.03s/it] 30%|███ | 15/50 [00:15<00:36, 1.03s/it] 32%|███▏ | 16/50 [00:16<00:35, 1.03s/it] 34%|███▍ | 17/50 [00:17<00:34, 1.03s/it] 36%|███▌ | 18/50 [00:18<00:33, 1.04s/it] 38%|███▊ | 19/50 [00:19<00:32, 1.04s/it] 40%|████ | 20/50 [00:20<00:31, 1.04s/it] 42%|████▏ | 21/50 [00:21<00:30, 1.04s/it] 44%|████▍ | 22/50 [00:22<00:29, 1.04s/it] 46%|████▌ | 23/50 [00:23<00:28, 1.04s/it] 48%|████▊ | 24/50 [00:24<00:27, 1.05s/it] 50%|█████ | 25/50 [00:25<00:26, 1.05s/it] 52%|█████▏ | 26/50 [00:26<00:25, 1.05s/it] 54%|█████▍ | 27/50 [00:28<00:24, 1.05s/it] 56%|█████▌ | 28/50 [00:29<00:23, 1.05s/it] 58%|█████▊ | 29/50 [00:30<00:22, 1.05s/it] 60%|██████ | 30/50 [00:31<00:21, 1.05s/it] 62%|██████▏ | 31/50 [00:32<00:19, 1.05s/it] 64%|██████▍ | 32/50 [00:33<00:18, 1.05s/it] 66%|██████▌ | 33/50 [00:34<00:17, 1.05s/it] 68%|██████▊ | 34/50 [00:35<00:16, 1.05s/it] 70%|███████ | 35/50 [00:36<00:15, 1.05s/it] 72%|███████▏ | 36/50 [00:37<00:14, 1.06s/it] 74%|███████▍ | 37/50 [00:38<00:13, 1.06s/it] 76%|███████▌ | 38/50 [00:39<00:12, 1.06s/it] 78%|███████▊ | 39/50 [00:40<00:11, 1.06s/it] 80%|████████ | 40/50 [00:41<00:10, 1.06s/it] 82%|████████▏ | 41/50 [00:42<00:09, 1.06s/it] 84%|████████▍ | 42/50 [00:43<00:08, 1.06s/it] 86%|████████▌ | 43/50 [00:44<00:07, 1.06s/it] 88%|████████▊ | 44/50 [00:45<00:06, 1.06s/it] 90%|█████████ | 45/50 [00:47<00:05, 1.06s/it] 92%|█████████▏| 46/50 [00:48<00:04, 1.06s/it] 94%|█████████▍| 47/50 [00:49<00:03, 1.07s/it] 96%|█████████▌| 48/50 [00:50<00:02, 1.07s/it] 98%|█████████▊| 49/50 [00:51<00:01, 1.07s/it] 100%|██████████| 50/50 [00:52<00:00, 1.07s/it] 100%|██████████| 50/50 [00:52<00:00, 1.05s/it]
Want to make some of these yourself?
Run this model