Readme
This model doesn't have a readme.
AudioSR: Versatile Audio Super-resolution at Scale
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run nateraw/audio-super-resolution using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"nateraw/audio-super-resolution:0e453d5e4c2e0ef4f8d38a6167053dda09cf3c8dbca2355cde61dca55a915bc5",
{
input: {
seed: 42,
ddim_steps: 50,
input_file: "https://replicate.delivery/pbxt/JYv70XQsiZBbSmknfMhGoEb4QYbuyJ9hJkfgjyzCvh4TzPmT/music.wav",
guidance_scale: 3.5
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run nateraw/audio-super-resolution using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"nateraw/audio-super-resolution:0e453d5e4c2e0ef4f8d38a6167053dda09cf3c8dbca2355cde61dca55a915bc5",
input={
"seed": 42,
"ddim_steps": 50,
"input_file": "https://replicate.delivery/pbxt/JYv70XQsiZBbSmknfMhGoEb4QYbuyJ9hJkfgjyzCvh4TzPmT/music.wav",
"guidance_scale": 3.5
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run nateraw/audio-super-resolution using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "0e453d5e4c2e0ef4f8d38a6167053dda09cf3c8dbca2355cde61dca55a915bc5",
"input": {
"seed": 42,
"ddim_steps": 50,
"input_file": "https://replicate.delivery/pbxt/JYv70XQsiZBbSmknfMhGoEb4QYbuyJ9hJkfgjyzCvh4TzPmT/music.wav",
"guidance_scale": 3.5
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{
"completed_at": "2023-09-20T19:19:06.183902Z",
"created_at": "2023-09-20T19:17:04.700648Z",
"data_removed": false,
"error": null,
"id": "qqynzilbxm2t5h6eaywx2p7g54",
"input": {
"seed": 42,
"ddim_steps": 50,
"input_file": "https://replicate.delivery/pbxt/JYv70XQsiZBbSmknfMhGoEb4QYbuyJ9hJkfgjyzCvh4TzPmT/music.wav",
"guidance_scale": 3.5
},
"logs": "\u001b[93m Warning: audio is longer than 10.24 seconds, may degrade the model performance. It's recommand to truncate your audio to 5.12 seconds before input to AudioSR to get the best performance.\u001b[00m\n/src/audiosr/utils.py:109: FutureWarning: Pass sr=48000, n_fft=2048, n_mels=256, fmin=20, fmax=24000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\nmel = librosa_mel_fn(sampling_rate, filter_length, n_mel, mel_fmin, mel_fmax)\nRunning DDIM Sampling with 50 timesteps\nDDIM Sampler: 0%| | 0/50 [00:00<?, ?it/s]\nDDIM Sampler: 2%|▏ | 1/50 [00:06<05:20, 6.54s/it]\nDDIM Sampler: 4%|▍ | 2/50 [00:06<02:14, 2.80s/it]\nDDIM Sampler: 6%|▌ | 3/50 [00:06<01:15, 1.60s/it]\nDDIM Sampler: 8%|▊ | 4/50 [00:07<00:47, 1.04s/it]\nDDIM Sampler: 10%|█ | 5/50 [00:07<00:32, 1.37it/s]\nDDIM Sampler: 12%|█▏ | 6/50 [00:07<00:23, 1.84it/s]\nDDIM Sampler: 14%|█▍ | 7/50 [00:07<00:18, 2.36it/s]\nDDIM Sampler: 16%|█▌ | 8/50 [00:07<00:14, 2.89it/s]\nDDIM Sampler: 18%|█▊ | 9/50 [00:07<00:12, 3.40it/s]\nDDIM Sampler: 20%|██ | 10/50 [00:08<00:10, 3.86it/s]\nDDIM Sampler: 22%|██▏ | 11/50 [00:08<00:09, 4.26it/s]\nDDIM Sampler: 24%|██▍ | 12/50 [00:08<00:08, 4.59it/s]\nDDIM Sampler: 26%|██▌ | 13/50 [00:08<00:07, 4.85it/s]\nDDIM Sampler: 28%|██▊ | 14/50 [00:08<00:07, 5.04it/s]\nDDIM Sampler: 30%|███ | 15/50 [00:09<00:06, 5.19it/s]\nDDIM Sampler: 32%|███▏ | 16/50 [00:09<00:06, 5.29it/s]\nDDIM Sampler: 34%|███▍ | 17/50 [00:09<00:06, 5.37it/s]\nDDIM Sampler: 36%|███▌ | 18/50 [00:09<00:05, 5.42it/s]\nDDIM Sampler: 38%|███▊ | 19/50 [00:09<00:05, 5.46it/s]\nDDIM Sampler: 40%|████ | 20/50 [00:09<00:05, 5.49it/s]\nDDIM Sampler: 42%|████▏ | 21/50 [00:10<00:05, 5.51it/s]\nDDIM Sampler: 44%|████▍ | 22/50 [00:10<00:05, 5.53it/s]\nDDIM Sampler: 46%|████▌ | 23/50 [00:10<00:04, 5.54it/s]\nDDIM Sampler: 48%|████▊ | 24/50 [00:10<00:04, 5.55it/s]\nDDIM Sampler: 50%|█████ | 25/50 [00:10<00:04, 5.55it/s]\nDDIM Sampler: 52%|█████▏ | 26/50 [00:11<00:04, 5.56it/s]\nDDIM Sampler: 54%|█████▍ | 27/50 [00:11<00:04, 5.56it/s]\nDDIM Sampler: 56%|█████▌ | 28/50 [00:11<00:03, 5.56it/s]\nDDIM Sampler: 58%|█████▊ | 29/50 [00:11<00:03, 5.56it/s]\nDDIM Sampler: 60%|██████ | 30/50 [00:11<00:03, 5.56it/s]\nDDIM Sampler: 62%|██████▏ | 31/50 [00:11<00:03, 5.56it/s]\nDDIM Sampler: 64%|██████▍ | 32/50 [00:12<00:03, 5.48it/s]\nDDIM Sampler: 66%|██████▌ | 33/50 [00:12<00:03, 5.50it/s]\nDDIM Sampler: 68%|██████▊ | 34/50 [00:12<00:02, 5.44it/s]\nDDIM Sampler: 70%|███████ | 35/50 [00:12<00:02, 5.23it/s]\nDDIM Sampler: 72%|███████▏ | 36/50 [00:12<00:02, 5.08it/s]\nDDIM Sampler: 74%|███████▍ | 37/50 [00:13<00:02, 4.99it/s]\nDDIM Sampler: 76%|███████▌ | 38/50 [00:13<00:02, 4.85it/s]\nDDIM Sampler: 78%|███████▊ | 39/50 [00:13<00:02, 4.74it/s]\nDDIM Sampler: 80%|████████ | 40/50 [00:13<00:02, 4.71it/s]\nDDIM Sampler: 82%|████████▏ | 41/50 [00:13<00:01, 4.69it/s]\nDDIM Sampler: 84%|████████▍ | 42/50 [00:14<00:01, 4.68it/s]\nDDIM Sampler: 86%|████████▌ | 43/50 [00:14<00:01, 4.68it/s]\nDDIM Sampler: 88%|████████▊ | 44/50 [00:14<00:01, 4.81it/s]\nDDIM Sampler: 90%|█████████ | 45/50 [00:14<00:00, 5.01it/s]\nDDIM Sampler: 92%|█████████▏| 46/50 [00:14<00:00, 5.16it/s]\nDDIM Sampler: 94%|█████████▍| 47/50 [00:15<00:00, 5.28it/s]\nDDIM Sampler: 96%|█████████▌| 48/50 [00:15<00:00, 5.36it/s]\nDDIM Sampler: 98%|█████████▊| 49/50 [00:15<00:00, 5.42it/s]\nDDIM Sampler: 100%|██████████| 50/50 [00:15<00:00, 5.46it/s]\nDDIM Sampler: 100%|██████████| 50/50 [00:15<00:00, 3.19it/s]",
"metrics": {
"predict_time": 32.909901,
"total_time": 121.483254
},
"output": "https://pbxt.replicate.delivery/73xEQwFed8UXSCQpBJuLYgg8ym0vjp2nSidaqWKwcxhUvHzIA/out.wav",
"started_at": "2023-09-20T19:18:33.274001Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/qqynzilbxm2t5h6eaywx2p7g54",
"cancel": "https://api.replicate.com/v1/predictions/qqynzilbxm2t5h6eaywx2p7g54/cancel"
},
"version": "9c3d3e39fb0cb6aea677264881d8073f835336137b39fdea4e94093319379535"
}
Warning: audio is longer than 10.24 seconds, may degrade the model performance. It's recommand to truncate your audio to 5.12 seconds before input to AudioSR to get the best performance.
/src/audiosr/utils.py:109: FutureWarning: Pass sr=48000, n_fft=2048, n_mels=256, fmin=20, fmax=24000 as keyword args. From version 0.10 passing these as positional arguments will result in an error
mel = librosa_mel_fn(sampling_rate, filter_length, n_mel, mel_fmin, mel_fmax)
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 0%| | 0/50 [00:00<?, ?it/s]
DDIM Sampler: 2%|▏ | 1/50 [00:06<05:20, 6.54s/it]
DDIM Sampler: 4%|▍ | 2/50 [00:06<02:14, 2.80s/it]
DDIM Sampler: 6%|▌ | 3/50 [00:06<01:15, 1.60s/it]
DDIM Sampler: 8%|▊ | 4/50 [00:07<00:47, 1.04s/it]
DDIM Sampler: 10%|█ | 5/50 [00:07<00:32, 1.37it/s]
DDIM Sampler: 12%|█▏ | 6/50 [00:07<00:23, 1.84it/s]
DDIM Sampler: 14%|█▍ | 7/50 [00:07<00:18, 2.36it/s]
DDIM Sampler: 16%|█▌ | 8/50 [00:07<00:14, 2.89it/s]
DDIM Sampler: 18%|█▊ | 9/50 [00:07<00:12, 3.40it/s]
DDIM Sampler: 20%|██ | 10/50 [00:08<00:10, 3.86it/s]
DDIM Sampler: 22%|██▏ | 11/50 [00:08<00:09, 4.26it/s]
DDIM Sampler: 24%|██▍ | 12/50 [00:08<00:08, 4.59it/s]
DDIM Sampler: 26%|██▌ | 13/50 [00:08<00:07, 4.85it/s]
DDIM Sampler: 28%|██▊ | 14/50 [00:08<00:07, 5.04it/s]
DDIM Sampler: 30%|███ | 15/50 [00:09<00:06, 5.19it/s]
DDIM Sampler: 32%|███▏ | 16/50 [00:09<00:06, 5.29it/s]
DDIM Sampler: 34%|███▍ | 17/50 [00:09<00:06, 5.37it/s]
DDIM Sampler: 36%|███▌ | 18/50 [00:09<00:05, 5.42it/s]
DDIM Sampler: 38%|███▊ | 19/50 [00:09<00:05, 5.46it/s]
DDIM Sampler: 40%|████ | 20/50 [00:09<00:05, 5.49it/s]
DDIM Sampler: 42%|████▏ | 21/50 [00:10<00:05, 5.51it/s]
DDIM Sampler: 44%|████▍ | 22/50 [00:10<00:05, 5.53it/s]
DDIM Sampler: 46%|████▌ | 23/50 [00:10<00:04, 5.54it/s]
DDIM Sampler: 48%|████▊ | 24/50 [00:10<00:04, 5.55it/s]
DDIM Sampler: 50%|█████ | 25/50 [00:10<00:04, 5.55it/s]
DDIM Sampler: 52%|█████▏ | 26/50 [00:11<00:04, 5.56it/s]
DDIM Sampler: 54%|█████▍ | 27/50 [00:11<00:04, 5.56it/s]
DDIM Sampler: 56%|█████▌ | 28/50 [00:11<00:03, 5.56it/s]
DDIM Sampler: 58%|█████▊ | 29/50 [00:11<00:03, 5.56it/s]
DDIM Sampler: 60%|██████ | 30/50 [00:11<00:03, 5.56it/s]
DDIM Sampler: 62%|██████▏ | 31/50 [00:11<00:03, 5.56it/s]
DDIM Sampler: 64%|██████▍ | 32/50 [00:12<00:03, 5.48it/s]
DDIM Sampler: 66%|██████▌ | 33/50 [00:12<00:03, 5.50it/s]
DDIM Sampler: 68%|██████▊ | 34/50 [00:12<00:02, 5.44it/s]
DDIM Sampler: 70%|███████ | 35/50 [00:12<00:02, 5.23it/s]
DDIM Sampler: 72%|███████▏ | 36/50 [00:12<00:02, 5.08it/s]
DDIM Sampler: 74%|███████▍ | 37/50 [00:13<00:02, 4.99it/s]
DDIM Sampler: 76%|███████▌ | 38/50 [00:13<00:02, 4.85it/s]
DDIM Sampler: 78%|███████▊ | 39/50 [00:13<00:02, 4.74it/s]
DDIM Sampler: 80%|████████ | 40/50 [00:13<00:02, 4.71it/s]
DDIM Sampler: 82%|████████▏ | 41/50 [00:13<00:01, 4.69it/s]
DDIM Sampler: 84%|████████▍ | 42/50 [00:14<00:01, 4.68it/s]
DDIM Sampler: 86%|████████▌ | 43/50 [00:14<00:01, 4.68it/s]
DDIM Sampler: 88%|████████▊ | 44/50 [00:14<00:01, 4.81it/s]
DDIM Sampler: 90%|█████████ | 45/50 [00:14<00:00, 5.01it/s]
DDIM Sampler: 92%|█████████▏| 46/50 [00:14<00:00, 5.16it/s]
DDIM Sampler: 94%|█████████▍| 47/50 [00:15<00:00, 5.28it/s]
DDIM Sampler: 96%|█████████▌| 48/50 [00:15<00:00, 5.36it/s]
DDIM Sampler: 98%|█████████▊| 49/50 [00:15<00:00, 5.42it/s]
DDIM Sampler: 100%|██████████| 50/50 [00:15<00:00, 5.46it/s]
DDIM Sampler: 100%|██████████| 50/50 [00:15<00:00, 3.19it/s]
This example was created by a different version, nateraw/audio-super-resolution:9c3d3e39.
This model costs approximately $0.030 to run on Replicate, or 33 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 31 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Warning: audio is longer than 10.24 seconds, may degrade the model performance. It's recommand to truncate your audio to 5.12 seconds before input to AudioSR to get the best performance.
/src/audiosr/utils.py:109: FutureWarning: Pass sr=48000, n_fft=2048, n_mels=256, fmin=20, fmax=24000 as keyword args. From version 0.10 passing these as positional arguments will result in an error
mel = librosa_mel_fn(sampling_rate, filter_length, n_mel, mel_fmin, mel_fmax)
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 0%| | 0/50 [00:00<?, ?it/s]
DDIM Sampler: 2%|▏ | 1/50 [00:06<05:20, 6.54s/it]
DDIM Sampler: 4%|▍ | 2/50 [00:06<02:14, 2.80s/it]
DDIM Sampler: 6%|▌ | 3/50 [00:06<01:15, 1.60s/it]
DDIM Sampler: 8%|▊ | 4/50 [00:07<00:47, 1.04s/it]
DDIM Sampler: 10%|█ | 5/50 [00:07<00:32, 1.37it/s]
DDIM Sampler: 12%|█▏ | 6/50 [00:07<00:23, 1.84it/s]
DDIM Sampler: 14%|█▍ | 7/50 [00:07<00:18, 2.36it/s]
DDIM Sampler: 16%|█▌ | 8/50 [00:07<00:14, 2.89it/s]
DDIM Sampler: 18%|█▊ | 9/50 [00:07<00:12, 3.40it/s]
DDIM Sampler: 20%|██ | 10/50 [00:08<00:10, 3.86it/s]
DDIM Sampler: 22%|██▏ | 11/50 [00:08<00:09, 4.26it/s]
DDIM Sampler: 24%|██▍ | 12/50 [00:08<00:08, 4.59it/s]
DDIM Sampler: 26%|██▌ | 13/50 [00:08<00:07, 4.85it/s]
DDIM Sampler: 28%|██▊ | 14/50 [00:08<00:07, 5.04it/s]
DDIM Sampler: 30%|███ | 15/50 [00:09<00:06, 5.19it/s]
DDIM Sampler: 32%|███▏ | 16/50 [00:09<00:06, 5.29it/s]
DDIM Sampler: 34%|███▍ | 17/50 [00:09<00:06, 5.37it/s]
DDIM Sampler: 36%|███▌ | 18/50 [00:09<00:05, 5.42it/s]
DDIM Sampler: 38%|███▊ | 19/50 [00:09<00:05, 5.46it/s]
DDIM Sampler: 40%|████ | 20/50 [00:09<00:05, 5.49it/s]
DDIM Sampler: 42%|████▏ | 21/50 [00:10<00:05, 5.51it/s]
DDIM Sampler: 44%|████▍ | 22/50 [00:10<00:05, 5.53it/s]
DDIM Sampler: 46%|████▌ | 23/50 [00:10<00:04, 5.54it/s]
DDIM Sampler: 48%|████▊ | 24/50 [00:10<00:04, 5.55it/s]
DDIM Sampler: 50%|█████ | 25/50 [00:10<00:04, 5.55it/s]
DDIM Sampler: 52%|█████▏ | 26/50 [00:11<00:04, 5.56it/s]
DDIM Sampler: 54%|█████▍ | 27/50 [00:11<00:04, 5.56it/s]
DDIM Sampler: 56%|█████▌ | 28/50 [00:11<00:03, 5.56it/s]
DDIM Sampler: 58%|█████▊ | 29/50 [00:11<00:03, 5.56it/s]
DDIM Sampler: 60%|██████ | 30/50 [00:11<00:03, 5.56it/s]
DDIM Sampler: 62%|██████▏ | 31/50 [00:11<00:03, 5.56it/s]
DDIM Sampler: 64%|██████▍ | 32/50 [00:12<00:03, 5.48it/s]
DDIM Sampler: 66%|██████▌ | 33/50 [00:12<00:03, 5.50it/s]
DDIM Sampler: 68%|██████▊ | 34/50 [00:12<00:02, 5.44it/s]
DDIM Sampler: 70%|███████ | 35/50 [00:12<00:02, 5.23it/s]
DDIM Sampler: 72%|███████▏ | 36/50 [00:12<00:02, 5.08it/s]
DDIM Sampler: 74%|███████▍ | 37/50 [00:13<00:02, 4.99it/s]
DDIM Sampler: 76%|███████▌ | 38/50 [00:13<00:02, 4.85it/s]
DDIM Sampler: 78%|███████▊ | 39/50 [00:13<00:02, 4.74it/s]
DDIM Sampler: 80%|████████ | 40/50 [00:13<00:02, 4.71it/s]
DDIM Sampler: 82%|████████▏ | 41/50 [00:13<00:01, 4.69it/s]
DDIM Sampler: 84%|████████▍ | 42/50 [00:14<00:01, 4.68it/s]
DDIM Sampler: 86%|████████▌ | 43/50 [00:14<00:01, 4.68it/s]
DDIM Sampler: 88%|████████▊ | 44/50 [00:14<00:01, 4.81it/s]
DDIM Sampler: 90%|█████████ | 45/50 [00:14<00:00, 5.01it/s]
DDIM Sampler: 92%|█████████▏| 46/50 [00:14<00:00, 5.16it/s]
DDIM Sampler: 94%|█████████▍| 47/50 [00:15<00:00, 5.28it/s]
DDIM Sampler: 96%|█████████▌| 48/50 [00:15<00:00, 5.36it/s]
DDIM Sampler: 98%|█████████▊| 49/50 [00:15<00:00, 5.42it/s]
DDIM Sampler: 100%|██████████| 50/50 [00:15<00:00, 5.46it/s]
DDIM Sampler: 100%|██████████| 50/50 [00:15<00:00, 3.19it/s]