Run nateraw/codellama-7b-instruct-hf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"nateraw/codellama-7b-instruct-hf:efe614f6aa2d04c1e153dc33e4bc54a3ce97df8f3da7021d15a79233face5c30",
{
input: {
top_k: 50,
top_p: 0.95,
message: "Write a function to load a csv file and find the 3 day rolling average of the \"profit\" column using the \"date\" column.",
temperature: 1,
max_new_tokens: 1024
}
}
);
console.log(output);
Run nateraw/codellama-7b-instruct-hf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"nateraw/codellama-7b-instruct-hf:efe614f6aa2d04c1e153dc33e4bc54a3ce97df8f3da7021d15a79233face5c30",
input={
"top_k": 50,
"top_p": 0.95,
"message": "Write a function to load a csv file and find the 3 day rolling average of the \"profit\" column using the \"date\" column.",
"temperature": 1,
"max_new_tokens": 1024
}
)
# The nateraw/codellama-7b-instruct-hf model can stream output as it's running.# The predict method returns an iterator, and you can iterate over that output.for item in output:
# https://replicate.com/nateraw/codellama-7b-instruct-hf/api#output-schemaprint(item, end="")
Run nateraw/codellama-7b-instruct-hf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "nateraw/codellama-7b-instruct-hf:efe614f6aa2d04c1e153dc33e4bc54a3ce97df8f3da7021d15a79233face5c30",
"input": {
"top_k": 50,
"top_p": 0.95,
"message": "Write a function to load a csv file and find the 3 day rolling average of the \\"profit\\" column using the \\"date\\" column.",
"temperature": 1,
"max_new_tokens": 1024
}
}' \
https://api.replicate.com/v1/predictions
Here is an example of how you can read in a csv file and calculate the 3 day rolling average of the "profit" column using the "date" column in Python:
```
import pandas as pd
# Read in the csv file
df = pd.read_csv('your_data.csv')
# Calculate the 3 day rolling average of the "profit" column using the "date" column
df['3_day_rolling_average'] = df['profit'].rolling(window=3).mean()
# Print the results
print(df)
```
This will give you the 3 day rolling average of the "profit" column for each row in the data frame.
Alternatively, you can also use the `rolling_mean` function from the `pandas` library:
```
df['3_day_rolling_average'] = df.rolling_mean(window=3, column='profit', date_column='date')
```
This will give you the same result as the previous code.