Readme
This model doesn't have a readme.
Undraw Illustration Generator
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run nicolas7894/flux-undraw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"nicolas7894/flux-undraw:a1c8efd083f978ab08ae9260cf2770e76e6ae959793bfe63c8d1afdaebbbcb20",
{
input: {
model: "dev",
prompt: "Person holding a large card with the text \"Follow @nicolas_tch\" untokoldr illustration",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run nicolas7894/flux-undraw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"nicolas7894/flux-undraw:a1c8efd083f978ab08ae9260cf2770e76e6ae959793bfe63c8d1afdaebbbcb20",
input={
"model": "dev",
"prompt": "Person holding a large card with the text \"Follow @nicolas_tch\" untokoldr illustration",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run nicolas7894/flux-undraw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "nicolas7894/flux-undraw:a1c8efd083f978ab08ae9260cf2770e76e6ae959793bfe63c8d1afdaebbbcb20",
"input": {
"model": "dev",
"prompt": "Person holding a large card with the text \\"Follow @nicolas_tch\\" untokoldr illustration",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/nicolas7894/flux-undraw@sha256:a1c8efd083f978ab08ae9260cf2770e76e6ae959793bfe63c8d1afdaebbbcb20 \
-i 'model="dev"' \
-i $'prompt="Person holding a large card with the text \\"Follow @nicolas_tch\\" untokoldr illustration"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/nicolas7894/flux-undraw@sha256:a1c8efd083f978ab08ae9260cf2770e76e6ae959793bfe63c8d1afdaebbbcb20
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "Person holding a large card with the text \\"Follow @nicolas_tch\\" untokoldr illustration", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-17T14:47:16.381717Z",
"created_at": "2024-08-17T14:44:08.277000Z",
"data_removed": false,
"error": null,
"id": "kcs0j0xktnrm20chc35r03289m",
"input": {
"model": "dev",
"prompt": "Person holding a large card with the text \"Follow @nicolas_tch\" untokoldr illustration",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 14270\nPrompt: Person holding a large card with the text \"Follow @nicolas_tch\" untokoldr illustration\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nEnsuring enough disk space...\nFree disk space: 9315138420736\nDownloading weights: https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar\n2024-08-17T14:46:44Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/1787d8148963af3e url=https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar\n2024-08-17T14:46:45Z | INFO | [ Complete ] dest=/src/weights-cache/1787d8148963af3e size=\"172 MB\" total_elapsed=1.464s url=https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar\nb''\nDownloaded weights in 1.5000555515289307 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.67it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.22it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.94it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.66it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.66it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.69it/s]",
"metrics": {
"predict_time": 32.180946444,
"total_time": 188.104717
},
"output": [
"https://replicate.delivery/yhqm/70iJuvSeCFW8ESoFzr7eKMLgYLc6YnksIrXb1Ues1RqoPNnmA/out-0.webp"
],
"started_at": "2024-08-17T14:46:44.200771Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/kcs0j0xktnrm20chc35r03289m",
"cancel": "https://api.replicate.com/v1/predictions/kcs0j0xktnrm20chc35r03289m/cancel"
},
"version": "a1c8efd083f978ab08ae9260cf2770e76e6ae959793bfe63c8d1afdaebbbcb20"
}
Using seed: 14270
Prompt: Person holding a large card with the text "Follow @nicolas_tch" untokoldr illustration
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9315138420736
Downloading weights: https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar
2024-08-17T14:46:44Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/1787d8148963af3e url=https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar
2024-08-17T14:46:45Z | INFO | [ Complete ] dest=/src/weights-cache/1787d8148963af3e size="172 MB" total_elapsed=1.464s url=https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar
b''
Downloaded weights in 1.5000555515289307 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.67it/s]
7%|▋ | 2/28 [00:00<00:06, 4.22it/s]
11%|█ | 3/28 [00:00<00:06, 3.94it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]
50%|█████ | 14/28 [00:03<00:03, 3.66it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]
61%|██████ | 17/28 [00:04<00:03, 3.66it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.69it/s]
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 14270
Prompt: Person holding a large card with the text "Follow @nicolas_tch" untokoldr illustration
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9315138420736
Downloading weights: https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar
2024-08-17T14:46:44Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/1787d8148963af3e url=https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar
2024-08-17T14:46:45Z | INFO | [ Complete ] dest=/src/weights-cache/1787d8148963af3e size="172 MB" total_elapsed=1.464s url=https://replicate.delivery/yhqm/qfhW9ucR070ZPSZuHRqCKnCMfjxZvCTH4rgPPOKSiC6yetmmA/trained_model.tar
b''
Downloaded weights in 1.5000555515289307 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.67it/s]
7%|▋ | 2/28 [00:00<00:06, 4.22it/s]
11%|█ | 3/28 [00:00<00:06, 3.94it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]
50%|█████ | 14/28 [00:03<00:03, 3.66it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]
61%|██████ | 17/28 [00:04<00:03, 3.66it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.69it/s]