okaris / controlnet

ControlNet implementation with custom SD1.5 fine tuned models

  • Public
  • 187 runs
  • GitHub
  • License

Run okaris/controlnet with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
controlnet_model
string (enum)

Options:

Canny, Depth, HED, Normal, MLSD, OpenPose, Scribble, Seg

Type of ControlNet model to use
base_model
string
Type of base model to use
image
string
Input image
prompt
string
Prompt for the model
num_samples
string (enum)
1

Options:

1, 4

Number of samples (higher values may OOM)
image_resolution
string (enum)
512

Options:

256, 512, 768

Image resolution to be generated
low_threshold
integer
100

Min: 1

Max: 255

Canny low threshold (only applicable when model type is 'canny')
high_threshold
integer
200

Min: 1

Max: 255

Canny high threshold (only applicable when model type is 'canny')
ddim_steps
integer
20
Steps
scale
number
9

Min: 0.1

Max: 30

Guidance Scale
seed
integer
Seed
eta
number
0
eta (DDIM)
a_prompt
string
best quality, extremely detailed
Added Prompt
n_prompt
string
longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
Negative Prompt
detect_resolution
integer
512

Min: 128

Max: 1024

Resolution for detection)
bg_threshold
number
0

Max: 1

Background Threshold (only applicable when model type is 'normal')
value_threshold
number
0.1

Min: 0.01

Max: 2

Value Threshold (only applicable when model type is 'MLSD')
distance_threshold
number
0.1

Min: 0.01

Max: 20

Distance Threshold (only applicable when model type is 'MLSD')

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "array",
  "items": {
    "type": "string",
    "format": "uri"
  },
  "title": "Output"
}