omerbt / multidiffusion

Fusing Diffusion Paths for Controlled Image Generation

  • Public
  • 2.2K runs
  • GitHub
  • Paper

MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation

Cog Implementation: https://github.com/chenxwh/cog-themed-diffusion/tree/MultiDiffusion

This page demonstrates MultiDiffusion Text2Panorama using Stable Diffusion model

teaser

MultiDiffusion is a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning, as described in (link to paper).

Recent advances in text-to-image generation with diffusion models present transformative capabilities in image quality. However, user controllability of the generated image, and fast adaptation to new tasks still remains an open challenge, currently mostly addressed by costly and long re-training and fine-tuning or ad-hoc adaptations to specific image generation tasks. In this work, we present MultiDiffusion, a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning. At the center of our approach is a new generation process, based on an optimization task that binds together multiple diffusion generation processes with a shared set of parameters or constraints. We show that MultiDiffusion can be readily applied to generate high quality and diverse images that adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes.

Citation

@article{bar2023multidiffusion,
  title={MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation},
  author={Bar-Tal, Omer and Yariv, Lior and Lipman, Yaron and Dekel, Tali},
  journal={arXiv preprint arXiv:2302.08113},
  year={2023}
}