omniedgeio
/
fabricai
- Public
- 118 runs
Run omniedgeio/fabricai with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
image |
string
|
input image
|
|
fabric_image |
string
|
image for style
|
|
clothes_type |
string
(enum)
|
Dress
Options: Upper-clothes, Skirt, Pants, Dress |
Format of the output images
|
controlnet_type |
string
(enum)
|
canny
Options: canny, depth, tile |
Format of the output images
|
style_strength |
number
|
0.4
Max: 3 |
How much the style should get applied
|
structure_strength |
number
|
0.6
Max: 3 |
How much the structure should keep the same
|
prompt |
string
|
masterpiece, best quality, highres
|
Prompt
|
negative_prompt |
string
|
worst quality, low quality, normal quality
|
Negative Prompt
|
num_inference_steps |
integer
|
30
Min: 1 Max: 100 |
Number of denoising steps
|
guidance_scale |
number
|
8
Min: 1 Max: 50 |
Scale for classifier-free guidance
|
seed |
integer
|
1337
|
Leave blank to randomize the seed
|
{
"type": "object",
"title": "Input",
"required": [
"image",
"fabric_image"
],
"properties": {
"seed": {
"type": "integer",
"title": "Seed",
"default": 1337,
"x-order": 10,
"description": "Leave blank to randomize the seed"
},
"image": {
"type": "string",
"title": "Image",
"format": "uri",
"x-order": 0,
"description": "input image"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "masterpiece, best quality, highres",
"x-order": 6,
"description": "Prompt"
},
"clothes_type": {
"enum": [
"Upper-clothes",
"Skirt",
"Pants",
"Dress"
],
"type": "string",
"title": "clothes_type",
"description": "Format of the output images",
"default": "Dress",
"x-order": 2
},
"fabric_image": {
"type": "string",
"title": "Fabric Image",
"format": "uri",
"x-order": 1,
"description": "image for style"
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 8,
"maximum": 50,
"minimum": 1,
"x-order": 9,
"description": "Scale for classifier-free guidance"
},
"style_strength": {
"type": "number",
"title": "Style Strength",
"default": 0.4,
"maximum": 3,
"minimum": 0,
"x-order": 4,
"description": "How much the style should get applied"
},
"controlnet_type": {
"enum": [
"canny",
"depth",
"tile"
],
"type": "string",
"title": "controlnet_type",
"description": "Format of the output images",
"default": "canny",
"x-order": 3
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"default": "worst quality, low quality, normal quality",
"x-order": 7,
"description": "Negative Prompt"
},
"structure_strength": {
"type": "number",
"title": "Structure Strength",
"default": 0.6,
"maximum": 3,
"minimum": 0,
"x-order": 5,
"description": "How much the structure should keep the same"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 30,
"maximum": 100,
"minimum": 1,
"x-order": 8,
"description": "Number of denoising steps"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}