✋ This model is not published yet.
You can claim this model if you're @openai on GitHub. Contact us.
openai / glide-text2im
Photorealistic Image Generation and Editing
Prediction
openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462IDlk5drtin4jh4rg52kf72l7mpxeStatusSucceededSourceWebHardware–Total durationCreatedInput
- mode
- clip_guided
- prompt
- an oil painting of a corgi
{ "mode": "clip_guided", "prompt": "an oil painting of a corgi" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", { input: { mode: "clip_guided", prompt: "an oil painting of a corgi" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", input={ "mode": "clip_guided", "prompt": "an oil painting of a corgi" } ) # The openai/glide-text2im model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/openai/glide-text2im/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", "input": { "mode": "clip_guided", "prompt": "an oil painting of a corgi" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/openai/glide-text2im@sha256:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462 \ -i 'mode="clip_guided"' \ -i 'prompt="an oil painting of a corgi"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/openai/glide-text2im@sha256:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mode": "clip_guided", "prompt": "an oil painting of a corgi" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-01-01T14:23:31.711286Z", "created_at": "2022-01-01T14:23:11.346680Z", "data_removed": false, "error": null, "id": "lk5drtin4jh4rg52kf72l7mpxe", "input": { "mode": "clip_guided", "prompt": "an oil painting of a corgi" }, "logs": "\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:15, 6.26it/s]\n 2%|▏ | 2/100 [00:00<00:16, 5.98it/s]\n 3%|▎ | 3/100 [00:00<00:15, 6.17it/s]\n 4%|▍ | 4/100 [00:00<00:15, 6.39it/s]\n 5%|▌ | 5/100 [00:00<00:14, 6.52it/s]\n 6%|▌ | 6/100 [00:00<00:14, 6.56it/s]\n 7%|▋ | 7/100 [00:01<00:14, 6.62it/s]\n 8%|▊ | 8/100 [00:01<00:13, 6.74it/s]\n 9%|▉ | 9/100 [00:01<00:13, 6.83it/s]\n 10%|█ | 10/100 [00:01<00:13, 6.78it/s]\n 11%|█ | 11/100 [00:01<00:13, 6.80it/s]\n 12%|█▏ | 12/100 [00:01<00:12, 6.79it/s]\n 13%|█▎ | 13/100 [00:01<00:12, 6.77it/s]\n 14%|█▍ | 14/100 [00:02<00:12, 6.86it/s]\n 15%|█▌ | 15/100 [00:02<00:12, 6.88it/s]\n 16%|█▌ | 16/100 [00:02<00:12, 6.91it/s]\n 17%|█▋ | 17/100 [00:02<00:12, 6.79it/s]\n 18%|█▊ | 18/100 [00:02<00:12, 6.69it/s]\n 19%|█▉ | 19/100 [00:02<00:12, 6.58it/s]\n 20%|██ | 20/100 [00:03<00:12, 6.42it/s]\n 21%|██ | 21/100 [00:03<00:12, 6.49it/s]\n 22%|██▏ | 22/100 [00:03<00:11, 6.63it/s]\n 23%|██▎ | 23/100 [00:03<00:11, 6.60it/s]\n 24%|██▍ | 24/100 [00:03<00:11, 6.63it/s]\n 25%|██▌ | 25/100 [00:03<00:11, 6.63it/s]\n 26%|██▌ | 26/100 [00:03<00:11, 6.70it/s]\n 27%|██▋ | 27/100 [00:04<00:10, 6.74it/s]\n 28%|██▊ | 28/100 [00:04<00:10, 6.80it/s]\n 29%|██▉ | 29/100 [00:04<00:10, 6.83it/s]\n 30%|███ | 30/100 [00:04<00:10, 6.80it/s]\n 31%|███ | 31/100 [00:04<00:10, 6.76it/s]\n 32%|███▏ | 32/100 [00:04<00:10, 6.74it/s]\n 33%|███▎ | 33/100 [00:04<00:09, 6.77it/s]\n 34%|███▍ | 34/100 [00:05<00:09, 6.75it/s]\n 35%|███▌ | 35/100 [00:05<00:09, 6.79it/s]\n 36%|███▌ | 36/100 [00:05<00:09, 6.87it/s]\n 37%|███▋ | 37/100 [00:05<00:09, 6.90it/s]\n 38%|███▊ | 38/100 [00:05<00:09, 6.86it/s]\n 39%|███▉ | 39/100 [00:05<00:08, 6.78it/s]\n 40%|████ | 40/100 [00:05<00:08, 6.69it/s]\n 41%|████ | 41/100 [00:06<00:08, 6.73it/s]\n 42%|████▏ | 42/100 [00:06<00:08, 6.80it/s]\n 43%|████▎ | 43/100 [00:06<00:08, 6.77it/s]\n 44%|████▍ | 44/100 [00:06<00:08, 6.83it/s]\n 45%|████▌ | 45/100 [00:06<00:08, 6.65it/s]\n 46%|████▌ | 46/100 [00:06<00:08, 6.69it/s]\n 47%|████▋ | 47/100 [00:07<00:07, 6.80it/s]\n 48%|████▊ | 48/100 [00:07<00:07, 6.88it/s]\n 49%|████▉ | 49/100 [00:07<00:07, 6.94it/s]\n 50%|█████ | 50/100 [00:07<00:07, 6.88it/s]\n 51%|█████ | 51/100 [00:07<00:07, 6.87it/s]\n 52%|█████▏ | 52/100 [00:07<00:06, 6.88it/s]\n 53%|█████▎ | 53/100 [00:07<00:06, 6.91it/s]\n 54%|█████▍ | 54/100 [00:08<00:06, 6.90it/s]\n 55%|█████▌ | 55/100 [00:08<00:06, 6.93it/s]\n 56%|█████▌ | 56/100 [00:08<00:06, 6.98it/s]\n 57%|█████▋ | 57/100 [00:08<00:06, 6.86it/s]\n 58%|█████▊ | 58/100 [00:08<00:06, 6.86it/s]\n 59%|█████▉ | 59/100 [00:08<00:05, 6.84it/s]\n 60%|██████ | 60/100 [00:08<00:05, 6.92it/s]\n 61%|██████ | 61/100 [00:09<00:05, 6.94it/s]\n 62%|██████▏ | 62/100 [00:09<00:05, 6.99it/s]\n 63%|██████▎ | 63/100 [00:09<00:05, 6.96it/s]\n 64%|██████▍ | 64/100 [00:09<00:05, 6.96it/s]\n 65%|██████▌ | 65/100 [00:09<00:05, 6.96it/s]\n 66%|██████▌ | 66/100 [00:09<00:04, 6.97it/s]\n 67%|██████▋ | 67/100 [00:09<00:04, 6.96it/s]\n 68%|██████▊ | 68/100 [00:10<00:04, 6.94it/s]\n 69%|██████▉ | 69/100 [00:10<00:04, 6.87it/s]\n 70%|███████ | 70/100 [00:10<00:04, 6.84it/s]\n 71%|███████ | 71/100 [00:10<00:04, 6.85it/s]\n 72%|███████▏ | 72/100 [00:10<00:04, 6.86it/s]\n 73%|███████▎ | 73/100 [00:10<00:03, 6.93it/s]\n 74%|███████▍ | 74/100 [00:10<00:03, 6.94it/s]\n 75%|███████▌ | 75/100 [00:11<00:03, 6.97it/s]\n 76%|███████▌ | 76/100 [00:11<00:03, 6.96it/s]\n 77%|███████▋ | 77/100 [00:11<00:03, 6.97it/s]\n 78%|███████▊ | 78/100 [00:11<00:03, 6.99it/s]\n 79%|███████▉ | 79/100 [00:11<00:02, 7.04it/s]\n 80%|████████ | 80/100 [00:11<00:02, 7.01it/s]\n 81%|████████ | 81/100 [00:11<00:02, 6.96it/s]\n 82%|████████▏ | 82/100 [00:12<00:02, 6.99it/s]\n 83%|████████▎ | 83/100 [00:12<00:02, 6.93it/s]\n 84%|████████▍ | 84/100 [00:12<00:02, 7.00it/s]\n 85%|████████▌ | 85/100 [00:12<00:02, 7.01it/s]\n 86%|████████▌ | 86/100 [00:12<00:02, 6.98it/s]\n 87%|████████▋ | 87/100 [00:12<00:01, 6.94it/s]\n 88%|████████▊ | 88/100 [00:12<00:01, 6.86it/s]\n 89%|████████▉ | 89/100 [00:13<00:01, 6.78it/s]\n 90%|█████████ | 90/100 [00:13<00:01, 6.85it/s]\n 91%|█████████ | 91/100 [00:13<00:01, 6.86it/s]\n 92%|█████████▏| 92/100 [00:13<00:01, 6.81it/s]\n 93%|█████████▎| 93/100 [00:13<00:01, 6.83it/s]\n 94%|█████████▍| 94/100 [00:13<00:00, 6.78it/s]\n 95%|█████████▌| 95/100 [00:13<00:00, 6.78it/s]\n 96%|█████████▌| 96/100 [00:14<00:00, 6.76it/s]\n 97%|█████████▋| 97/100 [00:14<00:00, 6.84it/s]\n 98%|█████████▊| 98/100 [00:14<00:00, 6.88it/s]\n 99%|█████████▉| 99/100 [00:14<00:00, 6.91it/s]\n100%|██████████| 100/100 [00:14<00:00, 6.96it/s]\n100%|██████████| 100/100 [00:14<00:00, 6.82it/s]\n\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:04, 5.92it/s]\n 7%|▋ | 2/27 [00:00<00:04, 5.94it/s]\n 11%|█ | 3/27 [00:00<00:04, 5.98it/s]\n 15%|█▍ | 4/27 [00:00<00:03, 5.95it/s]\n 19%|█▊ | 5/27 [00:00<00:03, 5.93it/s]\n 22%|██▏ | 6/27 [00:01<00:03, 5.95it/s]\n 26%|██▌ | 7/27 [00:01<00:03, 5.97it/s]\n 30%|██▉ | 8/27 [00:01<00:03, 5.99it/s]\n 33%|███▎ | 9/27 [00:01<00:02, 6.00it/s]\n 37%|███▋ | 10/27 [00:01<00:02, 6.03it/s]\n 41%|████ | 11/27 [00:01<00:02, 6.02it/s]\n 44%|████▍ | 12/27 [00:02<00:02, 6.02it/s]\n 48%|████▊ | 13/27 [00:02<00:02, 5.98it/s]\n 52%|█████▏ | 14/27 [00:02<00:02, 5.95it/s]\n 56%|█████▌ | 15/27 [00:02<00:02, 5.97it/s]\n 59%|█████▉ | 16/27 [00:02<00:01, 6.04it/s]\n 63%|██████▎ | 17/27 [00:02<00:01, 5.99it/s]\n 67%|██████▋ | 18/27 [00:03<00:01, 5.98it/s]\n 70%|███████ | 19/27 [00:03<00:01, 5.99it/s]\n 74%|███████▍ | 20/27 [00:03<00:01, 6.00it/s]\n 78%|███████▊ | 21/27 [00:03<00:01, 5.99it/s]\n 81%|████████▏ | 22/27 [00:03<00:00, 6.02it/s]\n 85%|████████▌ | 23/27 [00:03<00:00, 6.02it/s]\n 89%|████████▉ | 24/27 [00:03<00:00, 6.06it/s]\n 93%|█████████▎| 25/27 [00:04<00:00, 6.08it/s]\n 96%|█████████▋| 26/27 [00:04<00:00, 6.09it/s]\n100%|██████████| 27/27 [00:04<00:00, 6.10it/s]\n100%|██████████| 27/27 [00:04<00:00, 6.01it/s]", "metrics": { "predict_time": 20.134217, "total_time": 20.364606 }, "output": [ { "file": "https://replicate.delivery/mgxm/35fb74d6-7357-4696-85c0-455e93609916/out.png" } ], "started_at": "2022-01-01T14:23:11.577069Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/lk5drtin4jh4rg52kf72l7mpxe", "cancel": "https://api.replicate.com/v1/predictions/lk5drtin4jh4rg52kf72l7mpxe/cancel" }, "version": "0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462" }
Generated in0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:15, 6.26it/s] 2%|▏ | 2/100 [00:00<00:16, 5.98it/s] 3%|▎ | 3/100 [00:00<00:15, 6.17it/s] 4%|▍ | 4/100 [00:00<00:15, 6.39it/s] 5%|▌ | 5/100 [00:00<00:14, 6.52it/s] 6%|▌ | 6/100 [00:00<00:14, 6.56it/s] 7%|▋ | 7/100 [00:01<00:14, 6.62it/s] 8%|▊ | 8/100 [00:01<00:13, 6.74it/s] 9%|▉ | 9/100 [00:01<00:13, 6.83it/s] 10%|█ | 10/100 [00:01<00:13, 6.78it/s] 11%|█ | 11/100 [00:01<00:13, 6.80it/s] 12%|█▏ | 12/100 [00:01<00:12, 6.79it/s] 13%|█▎ | 13/100 [00:01<00:12, 6.77it/s] 14%|█▍ | 14/100 [00:02<00:12, 6.86it/s] 15%|█▌ | 15/100 [00:02<00:12, 6.88it/s] 16%|█▌ | 16/100 [00:02<00:12, 6.91it/s] 17%|█▋ | 17/100 [00:02<00:12, 6.79it/s] 18%|█▊ | 18/100 [00:02<00:12, 6.69it/s] 19%|█▉ | 19/100 [00:02<00:12, 6.58it/s] 20%|██ | 20/100 [00:03<00:12, 6.42it/s] 21%|██ | 21/100 [00:03<00:12, 6.49it/s] 22%|██▏ | 22/100 [00:03<00:11, 6.63it/s] 23%|██▎ | 23/100 [00:03<00:11, 6.60it/s] 24%|██▍ | 24/100 [00:03<00:11, 6.63it/s] 25%|██▌ | 25/100 [00:03<00:11, 6.63it/s] 26%|██▌ | 26/100 [00:03<00:11, 6.70it/s] 27%|██▋ | 27/100 [00:04<00:10, 6.74it/s] 28%|██▊ | 28/100 [00:04<00:10, 6.80it/s] 29%|██▉ | 29/100 [00:04<00:10, 6.83it/s] 30%|███ | 30/100 [00:04<00:10, 6.80it/s] 31%|███ | 31/100 [00:04<00:10, 6.76it/s] 32%|███▏ | 32/100 [00:04<00:10, 6.74it/s] 33%|███▎ | 33/100 [00:04<00:09, 6.77it/s] 34%|███▍ | 34/100 [00:05<00:09, 6.75it/s] 35%|███▌ | 35/100 [00:05<00:09, 6.79it/s] 36%|███▌ | 36/100 [00:05<00:09, 6.87it/s] 37%|███▋ | 37/100 [00:05<00:09, 6.90it/s] 38%|███▊ | 38/100 [00:05<00:09, 6.86it/s] 39%|███▉ | 39/100 [00:05<00:08, 6.78it/s] 40%|████ | 40/100 [00:05<00:08, 6.69it/s] 41%|████ | 41/100 [00:06<00:08, 6.73it/s] 42%|████▏ | 42/100 [00:06<00:08, 6.80it/s] 43%|████▎ | 43/100 [00:06<00:08, 6.77it/s] 44%|████▍ | 44/100 [00:06<00:08, 6.83it/s] 45%|████▌ | 45/100 [00:06<00:08, 6.65it/s] 46%|████▌ | 46/100 [00:06<00:08, 6.69it/s] 47%|████▋ | 47/100 [00:07<00:07, 6.80it/s] 48%|████▊ | 48/100 [00:07<00:07, 6.88it/s] 49%|████▉ | 49/100 [00:07<00:07, 6.94it/s] 50%|█████ | 50/100 [00:07<00:07, 6.88it/s] 51%|█████ | 51/100 [00:07<00:07, 6.87it/s] 52%|█████▏ | 52/100 [00:07<00:06, 6.88it/s] 53%|█████▎ | 53/100 [00:07<00:06, 6.91it/s] 54%|█████▍ | 54/100 [00:08<00:06, 6.90it/s] 55%|█████▌ | 55/100 [00:08<00:06, 6.93it/s] 56%|█████▌ | 56/100 [00:08<00:06, 6.98it/s] 57%|█████▋ | 57/100 [00:08<00:06, 6.86it/s] 58%|█████▊ | 58/100 [00:08<00:06, 6.86it/s] 59%|█████▉ | 59/100 [00:08<00:05, 6.84it/s] 60%|██████ | 60/100 [00:08<00:05, 6.92it/s] 61%|██████ | 61/100 [00:09<00:05, 6.94it/s] 62%|██████▏ | 62/100 [00:09<00:05, 6.99it/s] 63%|██████▎ | 63/100 [00:09<00:05, 6.96it/s] 64%|██████▍ | 64/100 [00:09<00:05, 6.96it/s] 65%|██████▌ | 65/100 [00:09<00:05, 6.96it/s] 66%|██████▌ | 66/100 [00:09<00:04, 6.97it/s] 67%|██████▋ | 67/100 [00:09<00:04, 6.96it/s] 68%|██████▊ | 68/100 [00:10<00:04, 6.94it/s] 69%|██████▉ | 69/100 [00:10<00:04, 6.87it/s] 70%|███████ | 70/100 [00:10<00:04, 6.84it/s] 71%|███████ | 71/100 [00:10<00:04, 6.85it/s] 72%|███████▏ | 72/100 [00:10<00:04, 6.86it/s] 73%|███████▎ | 73/100 [00:10<00:03, 6.93it/s] 74%|███████▍ | 74/100 [00:10<00:03, 6.94it/s] 75%|███████▌ | 75/100 [00:11<00:03, 6.97it/s] 76%|███████▌ | 76/100 [00:11<00:03, 6.96it/s] 77%|███████▋ | 77/100 [00:11<00:03, 6.97it/s] 78%|███████▊ | 78/100 [00:11<00:03, 6.99it/s] 79%|███████▉ | 79/100 [00:11<00:02, 7.04it/s] 80%|████████ | 80/100 [00:11<00:02, 7.01it/s] 81%|████████ | 81/100 [00:11<00:02, 6.96it/s] 82%|████████▏ | 82/100 [00:12<00:02, 6.99it/s] 83%|████████▎ | 83/100 [00:12<00:02, 6.93it/s] 84%|████████▍ | 84/100 [00:12<00:02, 7.00it/s] 85%|████████▌ | 85/100 [00:12<00:02, 7.01it/s] 86%|████████▌ | 86/100 [00:12<00:02, 6.98it/s] 87%|████████▋ | 87/100 [00:12<00:01, 6.94it/s] 88%|████████▊ | 88/100 [00:12<00:01, 6.86it/s] 89%|████████▉ | 89/100 [00:13<00:01, 6.78it/s] 90%|█████████ | 90/100 [00:13<00:01, 6.85it/s] 91%|█████████ | 91/100 [00:13<00:01, 6.86it/s] 92%|█████████▏| 92/100 [00:13<00:01, 6.81it/s] 93%|█████████▎| 93/100 [00:13<00:01, 6.83it/s] 94%|█████████▍| 94/100 [00:13<00:00, 6.78it/s] 95%|█████████▌| 95/100 [00:13<00:00, 6.78it/s] 96%|█████████▌| 96/100 [00:14<00:00, 6.76it/s] 97%|█████████▋| 97/100 [00:14<00:00, 6.84it/s] 98%|█████████▊| 98/100 [00:14<00:00, 6.88it/s] 99%|█████████▉| 99/100 [00:14<00:00, 6.91it/s] 100%|██████████| 100/100 [00:14<00:00, 6.96it/s] 100%|██████████| 100/100 [00:14<00:00, 6.82it/s] 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:04, 5.92it/s] 7%|▋ | 2/27 [00:00<00:04, 5.94it/s] 11%|█ | 3/27 [00:00<00:04, 5.98it/s] 15%|█▍ | 4/27 [00:00<00:03, 5.95it/s] 19%|█▊ | 5/27 [00:00<00:03, 5.93it/s] 22%|██▏ | 6/27 [00:01<00:03, 5.95it/s] 26%|██▌ | 7/27 [00:01<00:03, 5.97it/s] 30%|██▉ | 8/27 [00:01<00:03, 5.99it/s] 33%|███▎ | 9/27 [00:01<00:02, 6.00it/s] 37%|███▋ | 10/27 [00:01<00:02, 6.03it/s] 41%|████ | 11/27 [00:01<00:02, 6.02it/s] 44%|████▍ | 12/27 [00:02<00:02, 6.02it/s] 48%|████▊ | 13/27 [00:02<00:02, 5.98it/s] 52%|█████▏ | 14/27 [00:02<00:02, 5.95it/s] 56%|█████▌ | 15/27 [00:02<00:02, 5.97it/s] 59%|█████▉ | 16/27 [00:02<00:01, 6.04it/s] 63%|██████▎ | 17/27 [00:02<00:01, 5.99it/s] 67%|██████▋ | 18/27 [00:03<00:01, 5.98it/s] 70%|███████ | 19/27 [00:03<00:01, 5.99it/s] 74%|███████▍ | 20/27 [00:03<00:01, 6.00it/s] 78%|███████▊ | 21/27 [00:03<00:01, 5.99it/s] 81%|████████▏ | 22/27 [00:03<00:00, 6.02it/s] 85%|████████▌ | 23/27 [00:03<00:00, 6.02it/s] 89%|████████▉ | 24/27 [00:03<00:00, 6.06it/s] 93%|█████████▎| 25/27 [00:04<00:00, 6.08it/s] 96%|█████████▋| 26/27 [00:04<00:00, 6.09it/s] 100%|██████████| 27/27 [00:04<00:00, 6.10it/s] 100%|██████████| 27/27 [00:04<00:00, 6.01it/s]
Prediction
openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462ID7j4fvnxhs5dgfpldjmqpyokk34StatusSucceededSourceWebHardware–Total durationCreatedInput
- mode
- text2im
- prompt
- an oil painting of a corgi
{ "mode": "text2im", "prompt": "an oil painting of a corgi" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", { input: { mode: "text2im", prompt: "an oil painting of a corgi" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", input={ "mode": "text2im", "prompt": "an oil painting of a corgi" } ) # The openai/glide-text2im model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/openai/glide-text2im/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", "input": { "mode": "text2im", "prompt": "an oil painting of a corgi" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/openai/glide-text2im@sha256:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462 \ -i 'mode="text2im"' \ -i 'prompt="an oil painting of a corgi"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/openai/glide-text2im@sha256:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mode": "text2im", "prompt": "an oil painting of a corgi" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-01-01T14:19:39.276865Z", "created_at": "2022-01-01T14:19:23.718832Z", "data_removed": false, "error": null, "id": "7j4fvnxhs5dgfpldjmqpyokk34", "input": { "mode": "text2im", "prompt": "an oil painting of a corgi" }, "logs": "\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:13, 7.54it/s]\n 2%|▏ | 2/100 [00:00<00:12, 7.69it/s]\n 3%|▎ | 3/100 [00:00<00:11, 8.25it/s]\n 4%|▍ | 4/100 [00:00<00:11, 8.67it/s]\n 5%|▌ | 5/100 [00:00<00:10, 8.95it/s]\n 6%|▌ | 6/100 [00:00<00:10, 9.09it/s]\n 7%|▋ | 7/100 [00:00<00:10, 9.20it/s]\n 8%|▊ | 8/100 [00:00<00:09, 9.27it/s]\n 9%|▉ | 9/100 [00:00<00:09, 9.47it/s]\n 10%|█ | 10/100 [00:01<00:09, 9.50it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.45it/s]\n 13%|█▎ | 13/100 [00:01<00:08, 9.71it/s]\n 15%|█▌ | 15/100 [00:01<00:08, 9.83it/s]\n 16%|█▌ | 16/100 [00:01<00:08, 9.74it/s]\n 17%|█▋ | 17/100 [00:01<00:08, 9.65it/s]\n 18%|█▊ | 18/100 [00:01<00:08, 9.60it/s]\n 19%|█▉ | 19/100 [00:02<00:08, 9.63it/s]\n 21%|██ | 21/100 [00:02<00:08, 9.83it/s]\n 23%|██▎ | 23/100 [00:02<00:07, 9.92it/s]\n 24%|██▍ | 24/100 [00:02<00:07, 9.90it/s]\n 25%|██▌ | 25/100 [00:02<00:07, 9.91it/s]\n 27%|██▋ | 27/100 [00:02<00:07, 9.90it/s]\n 28%|██▊ | 28/100 [00:02<00:07, 9.92it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.94it/s]\n 31%|███ | 31/100 [00:03<00:06, 9.86it/s]\n 33%|███▎ | 33/100 [00:03<00:06, 9.99it/s]\n 35%|███▌ | 35/100 [00:03<00:06, 10.02it/s]\n 37%|███▋ | 37/100 [00:03<00:06, 9.97it/s]\n 38%|███▊ | 38/100 [00:03<00:06, 9.87it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 9.79it/s]\n 41%|████ | 41/100 [00:04<00:05, 9.90it/s]\n 43%|████▎ | 43/100 [00:04<00:05, 9.99it/s]\n 45%|████▌ | 45/100 [00:04<00:05, 10.05it/s]\n 47%|████▋ | 47/100 [00:04<00:05, 10.05it/s]\n 49%|████▉ | 49/100 [00:04<00:05, 10.02it/s]\n 51%|█████ | 51/100 [00:05<00:04, 9.97it/s]\n 53%|█████▎ | 53/100 [00:05<00:04, 10.04it/s]\n 55%|█████▌ | 55/100 [00:05<00:04, 10.07it/s]\n 57%|█████▋ | 57/100 [00:05<00:04, 9.92it/s]\n 58%|█████▊ | 58/100 [00:05<00:04, 9.93it/s]\n 60%|██████ | 60/100 [00:06<00:03, 10.02it/s]\n 62%|██████▏ | 62/100 [00:06<00:03, 10.13it/s]\n 64%|██████▍ | 64/100 [00:06<00:03, 10.21it/s]\n 66%|██████▌ | 66/100 [00:06<00:03, 10.13it/s]\n 68%|██████▊ | 68/100 [00:06<00:03, 9.97it/s]\n 69%|██████▉ | 69/100 [00:06<00:03, 9.89it/s]\n 71%|███████ | 71/100 [00:07<00:02, 9.98it/s]\n 73%|███████▎ | 73/100 [00:07<00:02, 10.03it/s]\n 75%|███████▌ | 75/100 [00:07<00:02, 10.01it/s]\n 77%|███████▋ | 77/100 [00:07<00:02, 10.01it/s]\n 79%|███████▉ | 79/100 [00:07<00:02, 10.12it/s]\n 81%|████████ | 81/100 [00:08<00:01, 10.13it/s]\n 83%|████████▎ | 83/100 [00:08<00:01, 10.16it/s]\n 85%|████████▌ | 85/100 [00:08<00:01, 10.13it/s]\n 87%|████████▋ | 87/100 [00:08<00:01, 10.08it/s]\n 89%|████████▉ | 89/100 [00:08<00:01, 10.11it/s]\n 91%|█████████ | 91/100 [00:09<00:00, 9.99it/s]\n 93%|█████████▎| 93/100 [00:09<00:00, 10.10it/s]\n 95%|█████████▌| 95/100 [00:09<00:00, 10.19it/s]\n 97%|█████████▋| 97/100 [00:09<00:00, 10.20it/s]\n 99%|█████████▉| 99/100 [00:09<00:00, 10.23it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.96it/s]\n\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:04, 6.26it/s]\n 7%|▋ | 2/27 [00:00<00:03, 6.31it/s]\n 11%|█ | 3/27 [00:00<00:03, 6.33it/s]\n 15%|█▍ | 4/27 [00:00<00:03, 6.32it/s]\n 19%|█▊ | 5/27 [00:00<00:03, 6.30it/s]\n 22%|██▏ | 6/27 [00:00<00:03, 6.29it/s]\n 26%|██▌ | 7/27 [00:01<00:03, 6.29it/s]\n 30%|██▉ | 8/27 [00:01<00:03, 6.31it/s]\n 33%|███▎ | 9/27 [00:01<00:02, 6.33it/s]\n 37%|███▋ | 10/27 [00:01<00:02, 6.36it/s]\n 41%|████ | 11/27 [00:01<00:02, 6.35it/s]\n 44%|████▍ | 12/27 [00:01<00:02, 6.35it/s]\n 48%|████▊ | 13/27 [00:02<00:02, 6.29it/s]\n 52%|█████▏ | 14/27 [00:02<00:02, 6.26it/s]\n 56%|█████▌ | 15/27 [00:02<00:01, 6.24it/s]\n 59%|█████▉ | 16/27 [00:02<00:01, 6.16it/s]\n 63%|██████▎ | 17/27 [00:02<00:01, 6.12it/s]\n 67%|██████▋ | 18/27 [00:02<00:01, 6.14it/s]\n 70%|███████ | 19/27 [00:03<00:01, 6.16it/s]\n 74%|███████▍ | 20/27 [00:03<00:01, 6.10it/s]\n 78%|███████▊ | 21/27 [00:03<00:00, 6.10it/s]\n 81%|████████▏ | 22/27 [00:03<00:00, 6.11it/s]\n 85%|████████▌ | 23/27 [00:03<00:00, 6.14it/s]\n 89%|████████▉ | 24/27 [00:03<00:00, 6.16it/s]\n 93%|█████████▎| 25/27 [00:04<00:00, 6.16it/s]\n 96%|█████████▋| 26/27 [00:04<00:00, 6.15it/s]\n100%|██████████| 27/27 [00:04<00:00, 6.16it/s]\n100%|██████████| 27/27 [00:04<00:00, 6.22it/s]", "metrics": { "predict_time": 15.332288, "total_time": 15.558033 }, "output": [ { "file": "https://replicate.delivery/mgxm/a1201519-e30f-421f-adf4-b80d536491e0/out.png" } ], "started_at": "2022-01-01T14:19:23.944577Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7j4fvnxhs5dgfpldjmqpyokk34", "cancel": "https://api.replicate.com/v1/predictions/7j4fvnxhs5dgfpldjmqpyokk34/cancel" }, "version": "0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462" }
Generated in0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:13, 7.54it/s] 2%|▏ | 2/100 [00:00<00:12, 7.69it/s] 3%|▎ | 3/100 [00:00<00:11, 8.25it/s] 4%|▍ | 4/100 [00:00<00:11, 8.67it/s] 5%|▌ | 5/100 [00:00<00:10, 8.95it/s] 6%|▌ | 6/100 [00:00<00:10, 9.09it/s] 7%|▋ | 7/100 [00:00<00:10, 9.20it/s] 8%|▊ | 8/100 [00:00<00:09, 9.27it/s] 9%|▉ | 9/100 [00:00<00:09, 9.47it/s] 10%|█ | 10/100 [00:01<00:09, 9.50it/s] 11%|█ | 11/100 [00:01<00:09, 9.45it/s] 13%|█▎ | 13/100 [00:01<00:08, 9.71it/s] 15%|█▌ | 15/100 [00:01<00:08, 9.83it/s] 16%|█▌ | 16/100 [00:01<00:08, 9.74it/s] 17%|█▋ | 17/100 [00:01<00:08, 9.65it/s] 18%|█▊ | 18/100 [00:01<00:08, 9.60it/s] 19%|█▉ | 19/100 [00:02<00:08, 9.63it/s] 21%|██ | 21/100 [00:02<00:08, 9.83it/s] 23%|██▎ | 23/100 [00:02<00:07, 9.92it/s] 24%|██▍ | 24/100 [00:02<00:07, 9.90it/s] 25%|██▌ | 25/100 [00:02<00:07, 9.91it/s] 27%|██▋ | 27/100 [00:02<00:07, 9.90it/s] 28%|██▊ | 28/100 [00:02<00:07, 9.92it/s] 30%|███ | 30/100 [00:03<00:07, 9.94it/s] 31%|███ | 31/100 [00:03<00:06, 9.86it/s] 33%|███▎ | 33/100 [00:03<00:06, 9.99it/s] 35%|███▌ | 35/100 [00:03<00:06, 10.02it/s] 37%|███▋ | 37/100 [00:03<00:06, 9.97it/s] 38%|███▊ | 38/100 [00:03<00:06, 9.87it/s] 39%|███▉ | 39/100 [00:04<00:06, 9.79it/s] 41%|████ | 41/100 [00:04<00:05, 9.90it/s] 43%|████▎ | 43/100 [00:04<00:05, 9.99it/s] 45%|████▌ | 45/100 [00:04<00:05, 10.05it/s] 47%|████▋ | 47/100 [00:04<00:05, 10.05it/s] 49%|████▉ | 49/100 [00:04<00:05, 10.02it/s] 51%|█████ | 51/100 [00:05<00:04, 9.97it/s] 53%|█████▎ | 53/100 [00:05<00:04, 10.04it/s] 55%|█████▌ | 55/100 [00:05<00:04, 10.07it/s] 57%|█████▋ | 57/100 [00:05<00:04, 9.92it/s] 58%|█████▊ | 58/100 [00:05<00:04, 9.93it/s] 60%|██████ | 60/100 [00:06<00:03, 10.02it/s] 62%|██████▏ | 62/100 [00:06<00:03, 10.13it/s] 64%|██████▍ | 64/100 [00:06<00:03, 10.21it/s] 66%|██████▌ | 66/100 [00:06<00:03, 10.13it/s] 68%|██████▊ | 68/100 [00:06<00:03, 9.97it/s] 69%|██████▉ | 69/100 [00:06<00:03, 9.89it/s] 71%|███████ | 71/100 [00:07<00:02, 9.98it/s] 73%|███████▎ | 73/100 [00:07<00:02, 10.03it/s] 75%|███████▌ | 75/100 [00:07<00:02, 10.01it/s] 77%|███████▋ | 77/100 [00:07<00:02, 10.01it/s] 79%|███████▉ | 79/100 [00:07<00:02, 10.12it/s] 81%|████████ | 81/100 [00:08<00:01, 10.13it/s] 83%|████████▎ | 83/100 [00:08<00:01, 10.16it/s] 85%|████████▌ | 85/100 [00:08<00:01, 10.13it/s] 87%|████████▋ | 87/100 [00:08<00:01, 10.08it/s] 89%|████████▉ | 89/100 [00:08<00:01, 10.11it/s] 91%|█████████ | 91/100 [00:09<00:00, 9.99it/s] 93%|█████████▎| 93/100 [00:09<00:00, 10.10it/s] 95%|█████████▌| 95/100 [00:09<00:00, 10.19it/s] 97%|█████████▋| 97/100 [00:09<00:00, 10.20it/s] 99%|█████████▉| 99/100 [00:09<00:00, 10.23it/s] 100%|██████████| 100/100 [00:10<00:00, 9.96it/s] 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:04, 6.26it/s] 7%|▋ | 2/27 [00:00<00:03, 6.31it/s] 11%|█ | 3/27 [00:00<00:03, 6.33it/s] 15%|█▍ | 4/27 [00:00<00:03, 6.32it/s] 19%|█▊ | 5/27 [00:00<00:03, 6.30it/s] 22%|██▏ | 6/27 [00:00<00:03, 6.29it/s] 26%|██▌ | 7/27 [00:01<00:03, 6.29it/s] 30%|██▉ | 8/27 [00:01<00:03, 6.31it/s] 33%|███▎ | 9/27 [00:01<00:02, 6.33it/s] 37%|███▋ | 10/27 [00:01<00:02, 6.36it/s] 41%|████ | 11/27 [00:01<00:02, 6.35it/s] 44%|████▍ | 12/27 [00:01<00:02, 6.35it/s] 48%|████▊ | 13/27 [00:02<00:02, 6.29it/s] 52%|█████▏ | 14/27 [00:02<00:02, 6.26it/s] 56%|█████▌ | 15/27 [00:02<00:01, 6.24it/s] 59%|█████▉ | 16/27 [00:02<00:01, 6.16it/s] 63%|██████▎ | 17/27 [00:02<00:01, 6.12it/s] 67%|██████▋ | 18/27 [00:02<00:01, 6.14it/s] 70%|███████ | 19/27 [00:03<00:01, 6.16it/s] 74%|███████▍ | 20/27 [00:03<00:01, 6.10it/s] 78%|███████▊ | 21/27 [00:03<00:00, 6.10it/s] 81%|████████▏ | 22/27 [00:03<00:00, 6.11it/s] 85%|████████▌ | 23/27 [00:03<00:00, 6.14it/s] 89%|████████▉ | 24/27 [00:03<00:00, 6.16it/s] 93%|█████████▎| 25/27 [00:04<00:00, 6.16it/s] 96%|█████████▋| 26/27 [00:04<00:00, 6.15it/s] 100%|██████████| 27/27 [00:04<00:00, 6.16it/s] 100%|██████████| 27/27 [00:04<00:00, 6.22it/s]
Prediction
openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462IDx5olt2qt4jfpvlkpj2bo5bmgtqStatusSucceededSourceWebHardware–Total durationCreatedInput
{ "mode": "inpaint", "image": "https://replicate.delivery/mgxm/520d0124-3528-4ffe-ad21-e1159670f125/grass.png", "prompt": "an oil painting of a corgi" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", { input: { mode: "inpaint", image: "https://replicate.delivery/mgxm/520d0124-3528-4ffe-ad21-e1159670f125/grass.png", prompt: "an oil painting of a corgi" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", input={ "mode": "inpaint", "image": "https://replicate.delivery/mgxm/520d0124-3528-4ffe-ad21-e1159670f125/grass.png", "prompt": "an oil painting of a corgi" } ) # The openai/glide-text2im model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/openai/glide-text2im/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run openai/glide-text2im using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "openai/glide-text2im:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462", "input": { "mode": "inpaint", "image": "https://replicate.delivery/mgxm/520d0124-3528-4ffe-ad21-e1159670f125/grass.png", "prompt": "an oil painting of a corgi" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/openai/glide-text2im@sha256:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462 \ -i 'mode="inpaint"' \ -i 'image="https://replicate.delivery/mgxm/520d0124-3528-4ffe-ad21-e1159670f125/grass.png"' \ -i 'prompt="an oil painting of a corgi"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/openai/glide-text2im@sha256:0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mode": "inpaint", "image": "https://replicate.delivery/mgxm/520d0124-3528-4ffe-ad21-e1159670f125/grass.png", "prompt": "an oil painting of a corgi" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-01-01T14:25:19.116226Z", "created_at": "2022-01-01T14:25:02.217311Z", "data_removed": false, "error": null, "id": "x5olt2qt4jfpvlkpj2bo5bmgtq", "input": { "mode": "inpaint", "image": "https://replicate.delivery/mgxm/520d0124-3528-4ffe-ad21-e1159670f125/grass.png", "prompt": "an oil painting of a corgi" }, "logs": "\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:13, 7.20it/s]\n 2%|▏ | 2/100 [00:00<00:12, 7.60it/s]\n 3%|▎ | 3/100 [00:00<00:12, 7.97it/s]\n 4%|▍ | 4/100 [00:00<00:11, 8.45it/s]\n 6%|▌ | 6/100 [00:00<00:10, 8.90it/s]\n 7%|▋ | 7/100 [00:00<00:10, 9.18it/s]\n 9%|▉ | 9/100 [00:00<00:09, 9.44it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.59it/s]\n 12%|█▏ | 12/100 [00:01<00:09, 9.60it/s]\n 13%|█▎ | 13/100 [00:01<00:09, 9.56it/s]\n 14%|█▍ | 14/100 [00:01<00:08, 9.60it/s]\n 15%|█▌ | 15/100 [00:01<00:08, 9.60it/s]\n 16%|█▌ | 16/100 [00:01<00:08, 9.64it/s]\n 17%|█▋ | 17/100 [00:01<00:08, 9.66it/s]\n 18%|█▊ | 18/100 [00:01<00:08, 9.66it/s]\n 19%|█▉ | 19/100 [00:01<00:08, 9.70it/s]\n 20%|██ | 20/100 [00:02<00:08, 9.59it/s]\n 21%|██ | 21/100 [00:02<00:08, 9.69it/s]\n 22%|██▏ | 22/100 [00:02<00:08, 9.57it/s]\n 23%|██▎ | 23/100 [00:02<00:08, 9.37it/s]\n 24%|██▍ | 24/100 [00:02<00:08, 9.37it/s]\n 25%|██▌ | 25/100 [00:02<00:07, 9.52it/s]\n 26%|██▌ | 26/100 [00:02<00:07, 9.63it/s]\n 28%|██▊ | 28/100 [00:02<00:07, 9.78it/s]\n 29%|██▉ | 29/100 [00:03<00:07, 9.80it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.75it/s]\n 31%|███ | 31/100 [00:03<00:07, 9.74it/s]\n 32%|███▏ | 32/100 [00:03<00:06, 9.80it/s]\n 33%|███▎ | 33/100 [00:03<00:06, 9.81it/s]\n 34%|███▍ | 34/100 [00:03<00:06, 9.85it/s]\n 35%|███▌ | 35/100 [00:03<00:06, 9.83it/s]\n 36%|███▌ | 36/100 [00:03<00:06, 9.73it/s]\n 37%|███▋ | 37/100 [00:03<00:06, 9.67it/s]\n 38%|███▊ | 38/100 [00:03<00:06, 9.76it/s]\n 40%|████ | 40/100 [00:04<00:06, 9.87it/s]\n 41%|████ | 41/100 [00:04<00:05, 9.88it/s]\n 43%|████▎ | 43/100 [00:04<00:05, 9.96it/s]\n 44%|████▍ | 44/100 [00:04<00:05, 9.91it/s]\n 46%|████▌ | 46/100 [00:04<00:05, 9.95it/s]\n 48%|████▊ | 48/100 [00:04<00:05, 9.99it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 9.96it/s]\n 51%|█████ | 51/100 [00:05<00:04, 10.00it/s]\n 53%|█████▎ | 53/100 [00:05<00:04, 9.85it/s]\n 54%|█████▍ | 54/100 [00:05<00:04, 9.65it/s]\n 55%|█████▌ | 55/100 [00:05<00:04, 9.61it/s]\n 57%|█████▋ | 57/100 [00:05<00:04, 9.74it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 9.82it/s]\n 61%|██████ | 61/100 [00:06<00:03, 9.86it/s]\n 62%|██████▏ | 62/100 [00:06<00:03, 9.84it/s]\n 64%|██████▍ | 64/100 [00:06<00:03, 9.99it/s]\n 66%|██████▌ | 66/100 [00:06<00:03, 10.07it/s]\n 68%|██████▊ | 68/100 [00:06<00:03, 10.04it/s]\n 70%|███████ | 70/100 [00:07<00:02, 10.07it/s]\n 72%|███████▏ | 72/100 [00:07<00:02, 10.08it/s]\n 74%|███████▍ | 74/100 [00:07<00:02, 10.12it/s]\n 76%|███████▌ | 76/100 [00:07<00:02, 10.10it/s]\n 78%|███████▊ | 78/100 [00:07<00:02, 10.21it/s]\n 80%|████████ | 80/100 [00:08<00:01, 10.23it/s]\n 82%|████████▏ | 82/100 [00:08<00:01, 10.20it/s]\n 84%|████████▍ | 84/100 [00:08<00:01, 10.18it/s]\n 86%|████████▌ | 86/100 [00:08<00:01, 10.21it/s]\n 88%|████████▊ | 88/100 [00:08<00:01, 10.23it/s]\n 90%|█████████ | 90/100 [00:09<00:00, 10.23it/s]\n 92%|█████████▏| 92/100 [00:09<00:00, 10.26it/s]\n 94%|█████████▍| 94/100 [00:09<00:00, 10.25it/s]\n 96%|█████████▌| 96/100 [00:09<00:00, 10.27it/s]\n 98%|█████████▊| 98/100 [00:09<00:00, 10.27it/s]\n100%|██████████| 100/100 [00:10<00:00, 10.25it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.91it/s]\n\n 0%| | 0/27 [00:00<?, ?it/s]\n 4%|▎ | 1/27 [00:00<00:04, 6.04it/s]\n 7%|▋ | 2/27 [00:00<00:04, 6.05it/s]\n 11%|█ | 3/27 [00:00<00:03, 6.05it/s]\n 15%|█▍ | 4/27 [00:00<00:03, 6.06it/s]\n 19%|█▊ | 5/27 [00:00<00:03, 6.06it/s]\n 22%|██▏ | 6/27 [00:00<00:03, 6.07it/s]\n 26%|██▌ | 7/27 [00:01<00:03, 6.09it/s]\n 30%|██▉ | 8/27 [00:01<00:03, 6.10it/s]\n 33%|███▎ | 9/27 [00:01<00:02, 6.09it/s]\n 37%|███▋ | 10/27 [00:01<00:02, 6.03it/s]\n 41%|████ | 11/27 [00:01<00:02, 6.00it/s]\n 44%|████▍ | 12/27 [00:01<00:02, 6.02it/s]\n 48%|████▊ | 13/27 [00:02<00:02, 6.05it/s]\n 52%|█████▏ | 14/27 [00:02<00:02, 6.06it/s]\n 56%|█████▌ | 15/27 [00:02<00:01, 6.05it/s]\n 59%|█████▉ | 16/27 [00:02<00:01, 6.06it/s]\n 63%|██████▎ | 17/27 [00:02<00:01, 6.06it/s]\n 67%|██████▋ | 18/27 [00:02<00:01, 6.05it/s]\n 70%|███████ | 19/27 [00:03<00:01, 6.04it/s]\n 74%|███████▍ | 20/27 [00:03<00:01, 6.07it/s]\n 78%|███████▊ | 21/27 [00:03<00:00, 6.08it/s]\n 81%|████████▏ | 22/27 [00:03<00:00, 6.11it/s]\n 85%|████████▌ | 23/27 [00:03<00:00, 6.10it/s]\n 89%|████████▉ | 24/27 [00:03<00:00, 6.08it/s]\n 93%|█████████▎| 25/27 [00:04<00:00, 6.11it/s]\n 96%|█████████▋| 26/27 [00:04<00:00, 6.11it/s]\n100%|██████████| 27/27 [00:04<00:00, 6.08it/s]\n100%|██████████| 27/27 [00:04<00:00, 6.07it/s]", "metrics": { "predict_time": 16.324952, "total_time": 16.898915 }, "output": [ { "file": "https://replicate.delivery/mgxm/10cfaf56-9b9c-4cc5-8df5-d99b63e15891/out.png" } ], "started_at": "2022-01-01T14:25:02.791274Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/x5olt2qt4jfpvlkpj2bo5bmgtq", "cancel": "https://api.replicate.com/v1/predictions/x5olt2qt4jfpvlkpj2bo5bmgtq/cancel" }, "version": "0edd79a209d37f1577d2462f98f014e9faba87d64a764f7d33078b22a2906462" }
Generated in0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:13, 7.20it/s] 2%|▏ | 2/100 [00:00<00:12, 7.60it/s] 3%|▎ | 3/100 [00:00<00:12, 7.97it/s] 4%|▍ | 4/100 [00:00<00:11, 8.45it/s] 6%|▌ | 6/100 [00:00<00:10, 8.90it/s] 7%|▋ | 7/100 [00:00<00:10, 9.18it/s] 9%|▉ | 9/100 [00:00<00:09, 9.44it/s] 11%|█ | 11/100 [00:01<00:09, 9.59it/s] 12%|█▏ | 12/100 [00:01<00:09, 9.60it/s] 13%|█▎ | 13/100 [00:01<00:09, 9.56it/s] 14%|█▍ | 14/100 [00:01<00:08, 9.60it/s] 15%|█▌ | 15/100 [00:01<00:08, 9.60it/s] 16%|█▌ | 16/100 [00:01<00:08, 9.64it/s] 17%|█▋ | 17/100 [00:01<00:08, 9.66it/s] 18%|█▊ | 18/100 [00:01<00:08, 9.66it/s] 19%|█▉ | 19/100 [00:01<00:08, 9.70it/s] 20%|██ | 20/100 [00:02<00:08, 9.59it/s] 21%|██ | 21/100 [00:02<00:08, 9.69it/s] 22%|██▏ | 22/100 [00:02<00:08, 9.57it/s] 23%|██▎ | 23/100 [00:02<00:08, 9.37it/s] 24%|██▍ | 24/100 [00:02<00:08, 9.37it/s] 25%|██▌ | 25/100 [00:02<00:07, 9.52it/s] 26%|██▌ | 26/100 [00:02<00:07, 9.63it/s] 28%|██▊ | 28/100 [00:02<00:07, 9.78it/s] 29%|██▉ | 29/100 [00:03<00:07, 9.80it/s] 30%|███ | 30/100 [00:03<00:07, 9.75it/s] 31%|███ | 31/100 [00:03<00:07, 9.74it/s] 32%|███▏ | 32/100 [00:03<00:06, 9.80it/s] 33%|███▎ | 33/100 [00:03<00:06, 9.81it/s] 34%|███▍ | 34/100 [00:03<00:06, 9.85it/s] 35%|███▌ | 35/100 [00:03<00:06, 9.83it/s] 36%|███▌ | 36/100 [00:03<00:06, 9.73it/s] 37%|███▋ | 37/100 [00:03<00:06, 9.67it/s] 38%|███▊ | 38/100 [00:03<00:06, 9.76it/s] 40%|████ | 40/100 [00:04<00:06, 9.87it/s] 41%|████ | 41/100 [00:04<00:05, 9.88it/s] 43%|████▎ | 43/100 [00:04<00:05, 9.96it/s] 44%|████▍ | 44/100 [00:04<00:05, 9.91it/s] 46%|████▌ | 46/100 [00:04<00:05, 9.95it/s] 48%|████▊ | 48/100 [00:04<00:05, 9.99it/s] 49%|████▉ | 49/100 [00:05<00:05, 9.96it/s] 51%|█████ | 51/100 [00:05<00:04, 10.00it/s] 53%|█████▎ | 53/100 [00:05<00:04, 9.85it/s] 54%|█████▍ | 54/100 [00:05<00:04, 9.65it/s] 55%|█████▌ | 55/100 [00:05<00:04, 9.61it/s] 57%|█████▋ | 57/100 [00:05<00:04, 9.74it/s] 59%|█████▉ | 59/100 [00:06<00:04, 9.82it/s] 61%|██████ | 61/100 [00:06<00:03, 9.86it/s] 62%|██████▏ | 62/100 [00:06<00:03, 9.84it/s] 64%|██████▍ | 64/100 [00:06<00:03, 9.99it/s] 66%|██████▌ | 66/100 [00:06<00:03, 10.07it/s] 68%|██████▊ | 68/100 [00:06<00:03, 10.04it/s] 70%|███████ | 70/100 [00:07<00:02, 10.07it/s] 72%|███████▏ | 72/100 [00:07<00:02, 10.08it/s] 74%|███████▍ | 74/100 [00:07<00:02, 10.12it/s] 76%|███████▌ | 76/100 [00:07<00:02, 10.10it/s] 78%|███████▊ | 78/100 [00:07<00:02, 10.21it/s] 80%|████████ | 80/100 [00:08<00:01, 10.23it/s] 82%|████████▏ | 82/100 [00:08<00:01, 10.20it/s] 84%|████████▍ | 84/100 [00:08<00:01, 10.18it/s] 86%|████████▌ | 86/100 [00:08<00:01, 10.21it/s] 88%|████████▊ | 88/100 [00:08<00:01, 10.23it/s] 90%|█████████ | 90/100 [00:09<00:00, 10.23it/s] 92%|█████████▏| 92/100 [00:09<00:00, 10.26it/s] 94%|█████████▍| 94/100 [00:09<00:00, 10.25it/s] 96%|█████████▌| 96/100 [00:09<00:00, 10.27it/s] 98%|█████████▊| 98/100 [00:09<00:00, 10.27it/s] 100%|██████████| 100/100 [00:10<00:00, 10.25it/s] 100%|██████████| 100/100 [00:10<00:00, 9.91it/s] 0%| | 0/27 [00:00<?, ?it/s] 4%|▎ | 1/27 [00:00<00:04, 6.04it/s] 7%|▋ | 2/27 [00:00<00:04, 6.05it/s] 11%|█ | 3/27 [00:00<00:03, 6.05it/s] 15%|█▍ | 4/27 [00:00<00:03, 6.06it/s] 19%|█▊ | 5/27 [00:00<00:03, 6.06it/s] 22%|██▏ | 6/27 [00:00<00:03, 6.07it/s] 26%|██▌ | 7/27 [00:01<00:03, 6.09it/s] 30%|██▉ | 8/27 [00:01<00:03, 6.10it/s] 33%|███▎ | 9/27 [00:01<00:02, 6.09it/s] 37%|███▋ | 10/27 [00:01<00:02, 6.03it/s] 41%|████ | 11/27 [00:01<00:02, 6.00it/s] 44%|████▍ | 12/27 [00:01<00:02, 6.02it/s] 48%|████▊ | 13/27 [00:02<00:02, 6.05it/s] 52%|█████▏ | 14/27 [00:02<00:02, 6.06it/s] 56%|█████▌ | 15/27 [00:02<00:01, 6.05it/s] 59%|█████▉ | 16/27 [00:02<00:01, 6.06it/s] 63%|██████▎ | 17/27 [00:02<00:01, 6.06it/s] 67%|██████▋ | 18/27 [00:02<00:01, 6.05it/s] 70%|███████ | 19/27 [00:03<00:01, 6.04it/s] 74%|███████▍ | 20/27 [00:03<00:01, 6.07it/s] 78%|███████▊ | 21/27 [00:03<00:00, 6.08it/s] 81%|████████▏ | 22/27 [00:03<00:00, 6.11it/s] 85%|████████▌ | 23/27 [00:03<00:00, 6.10it/s] 89%|████████▉ | 24/27 [00:03<00:00, 6.08it/s] 93%|█████████▎| 25/27 [00:04<00:00, 6.11it/s] 96%|█████████▋| 26/27 [00:04<00:00, 6.11it/s] 100%|██████████| 27/27 [00:04<00:00, 6.08it/s] 100%|██████████| 27/27 [00:04<00:00, 6.07it/s]
Want to make some of these yourself?
Run this model