You're looking at a specific version of this model. Jump to the model overview.

openai /whisper:e39e3547

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
audio
string
Audio file
model
string (enum)
large-v2

Options:

large, large-v2

Choose a Whisper model.
transcription
string (enum)
plain text

Options:

plain text, srt, vtt

Choose the format for the transcription
translate
boolean
False
Translate the text to English when set to True
language
string (enum)

Options:

af, am, ar, as, az, ba, be, bg, bn, bo, br, bs, ca, cs, cy, da, de, el, en, es, et, eu, fa, fi, fo, fr, gl, gu, ha, haw, he, hi, hr, ht, hu, hy, id, is, it, ja, jw, ka, kk, km, kn, ko, la, lb, ln, lo, lt, lv, mg, mi, mk, ml, mn, mr, ms, mt, my, ne, nl, nn, no, oc, pa, pl, ps, pt, ro, ru, sa, sd, si, sk, sl, sn, so, sq, sr, su, sv, sw, ta, te, tg, th, tk, tl, tr, tt, uk, ur, uz, vi, yi, yo, zh, Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Bashkir, Basque, Belarusian, Bengali, Bosnian, Breton, Bulgarian, Burmese, Castilian, Catalan, Chinese, Croatian, Czech, Danish, Dutch, English, Estonian, Faroese, Finnish, Flemish, French, Galician, Georgian, German, Greek, Gujarati, Haitian, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hungarian, Icelandic, Indonesian, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Lao, Latin, Latvian, Letzeburgesch, Lingala, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Moldavian, Moldovan, Mongolian, Myanmar, Nepali, Norwegian, Nynorsk, Occitan, Panjabi, Pashto, Persian, Polish, Portuguese, Punjabi, Pushto, Romanian, Russian, Sanskrit, Serbian, Shona, Sindhi, Sinhala, Sinhalese, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Tibetan, Turkish, Turkmen, Ukrainian, Urdu, Uzbek, Valencian, Vietnamese, Welsh, Yiddish, Yoruba

language spoken in the audio, specify None to perform language detection
temperature
number
0
temperature to use for sampling
patience
number
optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search
suppress_tokens
string
-1
comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations
initial_prompt
string
optional text to provide as a prompt for the first window.
condition_on_previous_text
boolean
True
if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop
temperature_increment_on_fallback
number
0.2
temperature to increase when falling back when the decoding fails to meet either of the thresholds below
compression_ratio_threshold
number
2.4
if the gzip compression ratio is higher than this value, treat the decoding as failed
logprob_threshold
number
-1
if the average log probability is lower than this value, treat the decoding as failed
no_speech_threshold
number
0.6
if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'properties': {'detected_language': {'title': 'Detected Language',
                                      'type': 'string'},
                'segments': {'title': 'Segments'},
                'srt_file': {'format': 'uri',
                             'title': 'Srt File',
                             'type': 'string'},
                'transcription': {'title': 'Transcription', 'type': 'string'},
                'translation': {'title': 'Translation', 'type': 'string'},
                'txt_file': {'format': 'uri',
                             'title': 'Txt File',
                             'type': 'string'}},
 'required': ['detected_language', 'transcription'],
 'title': 'ModelOutput',
 'type': 'object'}