prunaai/flux.1-omini-juiced


This model is an optimised version of stable-diffusion by stability AI that is 3x faster and 3x cheaper.


This is a 3x faster FLUX.1 [schnell] model from Black Forest Labs, optimised with pruna with minimal quality loss. Contact us for more at pruna.ai

This a pruna optimised version of the flux 1.dev model.

This is the fastest sdxl-lightning endpoint in the world on A100, contact us for more at pruna.ai


This is an optimised version of the hidream-l1 model using the pruna ai optimisation toolkit!

This is an optimised version of the hidream-l1-dev model using the pruna ai optimisation toolkit!

This is an optimised version of the hidream-full model using the pruna ai optimisation toolkit!


hunyuan3d-2 optimised with the pruna toolkit: https://github.com/PrunaAI/pruna

This is the f-lite model from FAL & Freepik optimised for 2x speedups through pruna

Edit an image with a prompt. This is the hidream-e1.1 model accelerated with the pruna optimisation engine.

A 2x faster qwen 3 model through pruna oss
This is VACE-1.3B model optimised with pruna ai. Wan2.1 VACE is an all-in-one model for video creation and editing.

This is a faster VACE-14B model, optimised with pruna, contact us for more at pruna.ai

This is the fastest Flux Dev endpoint in the world, contact us for more at pruna.ai

This is a 3x faster FLUX.1 [dev] model from Black Forest Labs, optimised with pruna with minimal quality loss.


Prediction
prunaai/flux.1-omini-juiced:490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5fIDz80fj2e76drj40cpc7y8xpqegmStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- seed
- 1
- prompt
- In a beautifully furnished living room, this item is placed in the middle
- image_size
- 512
- speed_mode
- Extra Juiced 🔥
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
- image_guidance_scale
- 1.5
{ "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Extra Juiced 🔥", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-omini-juiced:490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5f", { input: { seed: 1, prompt: "In a beautifully furnished living room, this item is placed in the middle", condition: "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", image_size: 512, speed_mode: "Extra Juiced 🔥", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28, image_guidance_scale: 1.5 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-omini-juiced:490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5f", input={ "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Extra Juiced 🔥", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-omini-juiced:490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5f", "input": { "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Extra Juiced 🔥", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-23T09:31:27.419868Z", "created_at": "2025-04-23T09:31:18.195000Z", "data_removed": false, "error": null, "id": "z80fj2e76drj40cpc7y8xpqegm", "input": { "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Extra Juiced 🔥", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:06<00:05, 2.50it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.21it/s]", "metrics": { "predict_time": 9.215829365, "total_time": 9.224868 }, "output": "https://replicate.delivery/yhqm/PGvV3diRTIKQAxifWV99eLZ6oHmAfAKAiqeuMptk2ZSftyskC/output_1_0.webp", "started_at": "2025-04-23T09:31:18.204039Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/yswh-3mnatzskib7tsc2hykjk7eyvm5xt3ytsku3rxbcyqo6f4hlhjg3a", "get": "https://api.replicate.com/v1/predictions/z80fj2e76drj40cpc7y8xpqegm", "cancel": "https://api.replicate.com/v1/predictions/z80fj2e76drj40cpc7y8xpqegm/cancel" }, "version": "490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5f" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale'] 0%| | 0/28 [00:00<?, ?it/s] 54%|█████▎ | 15/28 [00:06<00:05, 2.50it/s] 100%|██████████| 28/28 [00:08<00:00, 3.21it/s]
Prediction
prunaai/flux.1-omini-juiced:490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5fIDpqxyfded9hrj40cpc80aex2r90StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- seed
- 1
- prompt
- In a beautifully furnished living room, this item is placed in the middle
- image_size
- 512
- speed_mode
- Extra Juiced 🔥
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
- image_guidance_scale
- 1.5
{ "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Extra Juiced 🔥", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-omini-juiced:490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5f", { input: { seed: 1, prompt: "In a beautifully furnished living room, this item is placed in the middle", condition: "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", image_size: 512, speed_mode: "Extra Juiced 🔥", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28, image_guidance_scale: 1.5 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-omini-juiced:490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5f", input={ "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Extra Juiced 🔥", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-omini-juiced:490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5f", "input": { "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Extra Juiced 🔥", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-23T09:35:51.107692Z", "created_at": "2025-04-23T09:35:41.900000Z", "data_removed": false, "error": null, "id": "pqxyfded9hrj40cpc80aex2r90", "input": { "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Extra Juiced 🔥", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:06<00:05, 2.50it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.21it/s]", "metrics": { "predict_time": 9.19900574, "total_time": 9.207692 }, "output": "https://replicate.delivery/yhqm/vXDu0kjHiUJSLZ9kcem4E9Js7jQLYtacePiA4hDY0Bd3ZmlUA/output_1_0.webp", "started_at": "2025-04-23T09:35:41.908686Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/yswh-yuxkf7vnu2usjdyghi7jyaoizrn7zh42qzxfn37wdfexxvsiwwpq", "get": "https://api.replicate.com/v1/predictions/pqxyfded9hrj40cpc80aex2r90", "cancel": "https://api.replicate.com/v1/predictions/pqxyfded9hrj40cpc80aex2r90/cancel" }, "version": "490a3e1f7c42ba11d4b07960c070f585f02931d2b1067885c8b1a57ab2562f5f" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale'] 0%| | 0/28 [00:00<?, ?it/s] 54%|█████▎ | 15/28 [00:06<00:05, 2.50it/s] 100%|██████████| 28/28 [00:08<00:00, 3.21it/s]
Prediction
prunaai/flux.1-omini-juiced:908ad1e9a0799d91a006b110c20be660af3abe42809f4d9d776ae7d57395e804IDaf1mq8ejfxrj60cpbw1rsgb3bgStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- seed
- 10
- prompt
- On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.
- image_size
- 512
- speed_mode
- Lightly Juiced 🍊 (more consistent)
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
- image_guidance_scale
- 1
{ "seed": 10, "prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", "condition": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/penguin.jpg", "image_size": 512, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-omini-juiced:908ad1e9a0799d91a006b110c20be660af3abe42809f4d9d776ae7d57395e804", { input: { seed: 10, prompt: "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", condition: "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/penguin.jpg", image_size: 512, speed_mode: "Lightly Juiced 🍊 (more consistent)", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28, image_guidance_scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-omini-juiced:908ad1e9a0799d91a006b110c20be660af3abe42809f4d9d776ae7d57395e804", input={ "seed": 10, "prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", "condition": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/penguin.jpg", "image_size": 512, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-omini-juiced:908ad1e9a0799d91a006b110c20be660af3abe42809f4d9d776ae7d57395e804", "input": { "seed": 10, "prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", "condition": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/penguin.jpg", "image_size": 512, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-22T19:40:14.769500Z", "created_at": "2025-04-22T19:40:08.191000Z", "data_removed": false, "error": null, "id": "af1mq8ejfxrj60cpbw1rsgb3bg", "input": { "seed": 10, "prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", "condition": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/penguin.jpg", "image_size": 512, "speed_mode": "Lightly Juiced 🍊 (more consistent)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale']\n 0%| | 0/28 [00:00<?, ?it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.62it/s]\n100%|██████████| 28/28 [00:06<00:00, 4.49it/s]", "metrics": { "predict_time": 6.569915153, "total_time": 6.5785 }, "output": "https://replicate.delivery/yhqm/vpfdi6vCJzxHYafm3dmbIB21GyH9H6Gy5oj9D8IlLEreU0KpA/output_10_0.webp", "started_at": "2025-04-22T19:40:08.199585Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/yswh-v76ujmdz74riu3dlqkfhczwo3o6zqzfpdgia34vhtixzteqnnkka", "get": "https://api.replicate.com/v1/predictions/af1mq8ejfxrj60cpbw1rsgb3bg", "cancel": "https://api.replicate.com/v1/predictions/af1mq8ejfxrj60cpbw1rsgb3bg/cancel" }, "version": "908ad1e9a0799d91a006b110c20be660af3abe42809f4d9d776ae7d57395e804" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale'] 0%| | 0/28 [00:00<?, ?it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.62it/s] 100%|██████████| 28/28 [00:06<00:00, 4.49it/s]
Prediction
prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793ID0ves383qqxrj60cpbwntybqns4StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- seed
- 1
- prompt
- In a beautifully furnished living room, this item is placed in the middle
- image_size
- 512
- speed_mode
- Juiced 🔥 (default)
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
- image_guidance_scale
- 1.5
{ "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", { input: { seed: 1, prompt: "In a beautifully furnished living room, this item is placed in the middle", condition: "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", image_size: 512, speed_mode: "Juiced 🔥 (default)", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28, image_guidance_scale: 1.5 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", input={ "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", "input": { "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-22T20:23:33.159878Z", "created_at": "2025-04-22T20:23:26.399000Z", "data_removed": false, "error": null, "id": "0ves383qqxrj60cpbwntybqns4", "input": { "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale']\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:12, 2.19it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.43it/s]\n 11%|█ | 3/28 [00:01<00:10, 2.31it/s]\n 14%|█▍ | 4/28 [00:01<00:10, 2.26it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.01it/s]\n 25%|██▌ | 7/28 [00:02<00:05, 3.68it/s]\n 29%|██▊ | 8/28 [00:02<00:04, 4.25it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 4.42it/s]\n 39%|███▉ | 11/28 [00:03<00:03, 4.90it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 4.80it/s]\n 50%|█████ | 14/28 [00:03<00:02, 5.21it/s]\n 57%|█████▋ | 16/28 [00:04<00:02, 4.99it/s]\n 61%|██████ | 17/28 [00:04<00:02, 5.38it/s]\n 68%|██████▊ | 19/28 [00:04<00:01, 5.09it/s]\n 71%|███████▏ | 20/28 [00:04<00:01, 5.46it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 5.13it/s]\n 82%|████████▏ | 23/28 [00:05<00:00, 5.50it/s]\n 89%|████████▉ | 25/28 [00:05<00:00, 5.15it/s]\n 93%|█████████▎| 26/28 [00:05<00:00, 5.51it/s]\n100%|██████████| 28/28 [00:06<00:00, 5.15it/s]\n100%|██████████| 28/28 [00:06<00:00, 4.48it/s]", "metrics": { "predict_time": 6.749236056, "total_time": 6.760878 }, "output": "https://replicate.delivery/yhqm/FTZAya8ZSSLeOS4IR5RqDSFbwM0KOnsqZ6O8EOi8VbpiZtSKA/output_1_0.webp", "started_at": "2025-04-22T20:23:26.410642Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/yswh-sbeyd27oyhmcgqcf7mkk3u44ptgoxz3jqndzfmp6m5e34zd36wqq", "get": "https://api.replicate.com/v1/predictions/0ves383qqxrj60cpbwntybqns4", "cancel": "https://api.replicate.com/v1/predictions/0ves383qqxrj60cpbwntybqns4/cancel" }, "version": "4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale'] 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:12, 2.19it/s] 7%|▋ | 2/28 [00:00<00:10, 2.43it/s] 11%|█ | 3/28 [00:01<00:10, 2.31it/s] 14%|█▍ | 4/28 [00:01<00:10, 2.26it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.01it/s] 25%|██▌ | 7/28 [00:02<00:05, 3.68it/s] 29%|██▊ | 8/28 [00:02<00:04, 4.25it/s] 36%|███▌ | 10/28 [00:02<00:04, 4.42it/s] 39%|███▉ | 11/28 [00:03<00:03, 4.90it/s] 46%|████▋ | 13/28 [00:03<00:03, 4.80it/s] 50%|█████ | 14/28 [00:03<00:02, 5.21it/s] 57%|█████▋ | 16/28 [00:04<00:02, 4.99it/s] 61%|██████ | 17/28 [00:04<00:02, 5.38it/s] 68%|██████▊ | 19/28 [00:04<00:01, 5.09it/s] 71%|███████▏ | 20/28 [00:04<00:01, 5.46it/s] 79%|███████▊ | 22/28 [00:05<00:01, 5.13it/s] 82%|████████▏ | 23/28 [00:05<00:00, 5.50it/s] 89%|████████▉ | 25/28 [00:05<00:00, 5.15it/s] 93%|█████████▎| 26/28 [00:05<00:00, 5.51it/s] 100%|██████████| 28/28 [00:06<00:00, 5.15it/s] 100%|██████████| 28/28 [00:06<00:00, 4.48it/s]
Prediction
prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793IDrdfv2p074hrj00cpbwp9bwq2erStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- seed
- 1
- prompt
- In a beautifully furnished living room, this item is placed in the middle
- image_size
- 512
- speed_mode
- Juiced 🔥 (default)
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
- image_guidance_scale
- 1.5
{ "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", { input: { seed: 1, prompt: "In a beautifully furnished living room, this item is placed in the middle", condition: "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", image_size: 512, speed_mode: "Juiced 🔥 (default)", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28, image_guidance_scale: 1.5 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", input={ "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", "input": { "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-22T20:24:09.832237Z", "created_at": "2025-04-22T20:24:03.108000Z", "data_removed": false, "error": null, "id": "rdfv2p074hrj00cpbwp9bwq2er", "input": { "seed": 1, "prompt": "In a beautifully furnished living room, this item is placed in the middle", "condition": "https://replicate.delivery/yhqm/IItye7fbhRuEVkobFA7C103dtBn0AIfQAwaIHEOEw54BhICpA/output.png", "image_size": 512, "speed_mode": "Juiced 🔥 (default)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 1.5 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale']\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:12, 2.19it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.45it/s]\n 11%|█ | 3/28 [00:01<00:10, 2.32it/s]\n 14%|█▍ | 4/28 [00:01<00:10, 2.27it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.03it/s]\n 25%|██▌ | 7/28 [00:02<00:05, 3.69it/s]\n 29%|██▊ | 8/28 [00:02<00:04, 4.27it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 4.44it/s]\n 39%|███▉ | 11/28 [00:02<00:03, 4.91it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 4.82it/s]\n 50%|█████ | 14/28 [00:03<00:02, 5.23it/s]\n 57%|█████▋ | 16/28 [00:03<00:02, 4.94it/s]\n 61%|██████ | 17/28 [00:04<00:02, 5.34it/s]\n 68%|██████▊ | 19/28 [00:04<00:01, 5.04it/s]\n 71%|███████▏ | 20/28 [00:04<00:01, 5.41it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 5.09it/s]\n 82%|████████▏ | 23/28 [00:05<00:00, 5.47it/s]\n 89%|████████▉ | 25/28 [00:05<00:00, 5.14it/s]\n 93%|█████████▎| 26/28 [00:05<00:00, 5.51it/s]\n100%|██████████| 28/28 [00:06<00:00, 5.16it/s]\n100%|██████████| 28/28 [00:06<00:00, 4.48it/s]", "metrics": { "predict_time": 6.712976199, "total_time": 6.724237 }, "output": "https://replicate.delivery/yhqm/EHVALpeV1UWUGqLWmP8uNpUCgfkegzPHroD9NdK1hL5Tn1KpA/output_1_0.webp", "started_at": "2025-04-22T20:24:03.119261Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/yswh-6hc7vy4oiqvef3z43rcxlwjzhyiedd3ilc57b2rswfbkyamjxktq", "get": "https://api.replicate.com/v1/predictions/rdfv2p074hrj00cpbwp9bwq2er", "cancel": "https://api.replicate.com/v1/predictions/rdfv2p074hrj00cpbwp9bwq2er/cancel" }, "version": "4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale'] 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:12, 2.19it/s] 7%|▋ | 2/28 [00:00<00:10, 2.45it/s] 11%|█ | 3/28 [00:01<00:10, 2.32it/s] 14%|█▍ | 4/28 [00:01<00:10, 2.27it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.03it/s] 25%|██▌ | 7/28 [00:02<00:05, 3.69it/s] 29%|██▊ | 8/28 [00:02<00:04, 4.27it/s] 36%|███▌ | 10/28 [00:02<00:04, 4.44it/s] 39%|███▉ | 11/28 [00:02<00:03, 4.91it/s] 46%|████▋ | 13/28 [00:03<00:03, 4.82it/s] 50%|█████ | 14/28 [00:03<00:02, 5.23it/s] 57%|█████▋ | 16/28 [00:03<00:02, 4.94it/s] 61%|██████ | 17/28 [00:04<00:02, 5.34it/s] 68%|██████▊ | 19/28 [00:04<00:01, 5.04it/s] 71%|███████▏ | 20/28 [00:04<00:01, 5.41it/s] 79%|███████▊ | 22/28 [00:05<00:01, 5.09it/s] 82%|████████▏ | 23/28 [00:05<00:00, 5.47it/s] 89%|████████▉ | 25/28 [00:05<00:00, 5.14it/s] 93%|█████████▎| 26/28 [00:05<00:00, 5.51it/s] 100%|██████████| 28/28 [00:06<00:00, 5.16it/s] 100%|██████████| 28/28 [00:06<00:00, 4.48it/s]
Prediction
prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793ID8fj4b5gf45rj20cpbwy95f6tecStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- seed
- 2
- prompt
- A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.
- image_size
- 512
- speed_mode
- Extra Juiced 🔥 (more speed)
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 80
- num_inference_steps
- 28
- image_guidance_scale
- 2
{ "seed": 2, "prompt": "A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.", "condition": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/oranges.jpg", "image_size": 512, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 2 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", { input: { seed: 2, prompt: "A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.", condition: "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/oranges.jpg", image_size: 512, speed_mode: "Extra Juiced 🔥 (more speed)", aspect_ratio: "1:1", output_format: "webp", output_quality: 80, num_inference_steps: 28, image_guidance_scale: 2 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", input={ "seed": 2, "prompt": "A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.", "condition": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/oranges.jpg", "image_size": 512, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 2 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run prunaai/flux.1-omini-juiced using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "prunaai/flux.1-omini-juiced:4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793", "input": { "seed": 2, "prompt": "A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.", "condition": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/oranges.jpg", "image_size": 512, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 2 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-22T20:41:41.101617Z", "created_at": "2025-04-22T20:41:33.729000Z", "data_removed": false, "error": null, "id": "8fj4b5gf45rj20cpbwy95f6tec", "input": { "seed": 2, "prompt": "A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.", "condition": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/oranges.jpg", "image_size": 512, "speed_mode": "Extra Juiced 🔥 (more speed)", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 80, "num_inference_steps": 28, "image_guidance_scale": 2 }, "logs": "Using txt2img pipeline\nRunning prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale']\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:12, 2.19it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.45it/s]\n 11%|█ | 3/28 [00:01<00:10, 2.32it/s]\n 14%|█▍ | 4/28 [00:01<00:10, 2.26it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.23it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.94it/s]\n 29%|██▊ | 8/28 [00:02<00:03, 5.05it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 4.10it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 4.50it/s]\n 43%|████▎ | 12/28 [00:03<00:02, 6.67it/s]\n 50%|█████ | 14/28 [00:03<00:02, 5.27it/s]\n 57%|█████▋ | 16/28 [00:03<00:01, 7.10it/s]\n 64%|██████▍ | 18/28 [00:04<00:01, 5.56it/s]\n 71%|███████▏ | 20/28 [00:04<00:01, 7.24it/s]\n 79%|███████▊ | 22/28 [00:04<00:01, 5.71it/s]\n 86%|████████▌ | 24/28 [00:04<00:00, 7.31it/s]\n 93%|█████████▎| 26/28 [00:05<00:00, 5.78it/s]\n100%|██████████| 28/28 [00:05<00:00, 5.40it/s]\n100%|██████████| 28/28 [00:05<00:00, 4.77it/s]", "metrics": { "predict_time": 6.228237958, "total_time": 7.372617 }, "output": "https://replicate.delivery/yhqm/kXcNYOhtsvpUBVDhpFXEe8UbMeehapPimKFyf0cs1i0XQsVSB/output_2_0.webp", "started_at": "2025-04-22T20:41:34.873379Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/yswh-eo5fousqllw7xgtossxa33k3d7wmo5ppyn6xbs7dtwl7iwewxwfq", "get": "https://api.replicate.com/v1/predictions/8fj4b5gf45rj20cpbwy95f6tec", "cancel": "https://api.replicate.com/v1/predictions/8fj4b5gf45rj20cpbwy95f6tec/cancel" }, "version": "4abbe496540d006abafbe61d5d81839fc94090cd809fc04ef0181bea22d5e793" }
Generated inUsing txt2img pipeline Running prediction with args: ['prompt', 'conditions', 'height', 'width', 'num_inference_steps', 'generator', 'image_guidance_scale'] 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:12, 2.19it/s] 7%|▋ | 2/28 [00:00<00:10, 2.45it/s] 11%|█ | 3/28 [00:01<00:10, 2.32it/s] 14%|█▍ | 4/28 [00:01<00:10, 2.26it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.23it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.94it/s] 29%|██▊ | 8/28 [00:02<00:03, 5.05it/s] 32%|███▏ | 9/28 [00:02<00:04, 4.10it/s] 36%|███▌ | 10/28 [00:02<00:04, 4.50it/s] 43%|████▎ | 12/28 [00:03<00:02, 6.67it/s] 50%|█████ | 14/28 [00:03<00:02, 5.27it/s] 57%|█████▋ | 16/28 [00:03<00:01, 7.10it/s] 64%|██████▍ | 18/28 [00:04<00:01, 5.56it/s] 71%|███████▏ | 20/28 [00:04<00:01, 7.24it/s] 79%|███████▊ | 22/28 [00:04<00:01, 5.71it/s] 86%|████████▌ | 24/28 [00:04<00:00, 7.31it/s] 93%|█████████▎| 26/28 [00:05<00:00, 5.78it/s] 100%|██████████| 28/28 [00:05<00:00, 5.40it/s] 100%|██████████| 28/28 [00:05<00:00, 4.77it/s]
Want to make some of these yourself?
Run this model