qr2ai
/
img2paint_controlnet
Transform your image or QR code like never before
- Public
- 1.8K runs
-
L40S
Prediction
qr2ai/img2paint_controlnet:592691cfIDzmt5i7lbn3lle4dk4lfcvm5huyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- 130264517
- prompt
- Large Original Yellow Sunflower Landscape Oil Painting abstract arts
- qr_data
- null
- condition_scale
- 0.65
- negative_prompt
- low quality, bad quality, sketches, nsfw
- num_inference_steps
- 200
{ "seed": 130264517, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Large Original Yellow Sunflower Landscape Oil Painting abstract arts", "qr_data": null, "condition_scale": 0.65, "negative_prompt": "low quality, bad quality, sketches, nsfw", "num_inference_steps": 200 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "qr2ai/img2paint_controlnet:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", { input: { seed: 130264517, image: "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", prompt: "Large Original Yellow Sunflower Landscape Oil Painting abstract arts", condition_scale: 0.65, negative_prompt: "low quality, bad quality, sketches, nsfw", num_inference_steps: 200 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "qr2ai/img2paint_controlnet:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", input={ "seed": 130264517, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Large Original Yellow Sunflower Landscape Oil Painting abstract arts", "condition_scale": 0.65, "negative_prompt": "low quality, bad quality, sketches, nsfw", "num_inference_steps": 200 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", "input": { "seed": 130264517, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Large Original Yellow Sunflower Landscape Oil Painting abstract arts", "condition_scale": 0.65, "negative_prompt": "low quality, bad quality, sketches, nsfw", "num_inference_steps": 200 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-30T22:43:44.980094Z", "created_at": "2023-10-30T22:41:45.118141Z", "data_removed": false, "error": null, "id": "zmt5i7lbn3lle4dk4lfcvm5huy", "input": { "seed": 130264517, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Large Original Yellow Sunflower Landscape Oil Painting abstract arts", "qr_data": null, "condition_scale": 0.65, "negative_prompt": "low quality, bad quality, sketches, nsfw", "num_inference_steps": 200 }, "logs": "Using seed: 130264517\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<02:34, 1.28it/s]\n 1%| | 2/200 [00:01<01:37, 2.03it/s]\n 2%|▏ | 3/200 [00:01<01:19, 2.49it/s]\n 2%|▏ | 4/200 [00:01<01:10, 2.77it/s]\n 2%|▎ | 5/200 [00:01<01:05, 2.96it/s]\n 3%|▎ | 6/200 [00:02<01:02, 3.09it/s]\n 4%|▎ | 7/200 [00:02<01:00, 3.18it/s]\n 4%|▍ | 8/200 [00:02<00:59, 3.24it/s]\n 4%|▍ | 9/200 [00:03<00:58, 3.28it/s]\n 5%|▌ | 10/200 [00:03<00:57, 3.31it/s]\n 6%|▌ | 11/200 [00:03<00:56, 3.33it/s]\n 6%|▌ | 12/200 [00:04<00:56, 3.34it/s]\n 6%|▋ | 13/200 [00:04<00:55, 3.35it/s]\n 7%|▋ | 14/200 [00:04<00:55, 3.35it/s]\n 8%|▊ | 15/200 [00:04<00:55, 3.36it/s]\n 8%|▊ | 16/200 [00:05<00:54, 3.36it/s]\n 8%|▊ | 17/200 [00:05<00:54, 3.36it/s]\n 9%|▉ | 18/200 [00:05<00:54, 3.36it/s]\n 10%|▉ | 19/200 [00:06<00:53, 3.36it/s]\n 10%|█ | 20/200 [00:06<00:53, 3.36it/s]\n 10%|█ | 21/200 [00:06<00:53, 3.36it/s]\n 11%|█ | 22/200 [00:07<00:53, 3.36it/s]\n 12%|█▏ | 23/200 [00:07<00:52, 3.36it/s]\n 12%|█▏ | 24/200 [00:07<00:52, 3.36it/s]\n 12%|█▎ | 25/200 [00:07<00:52, 3.36it/s]\n 13%|█▎ | 26/200 [00:08<00:51, 3.36it/s]\n 14%|█▎ | 27/200 [00:08<00:51, 3.36it/s]\n 14%|█▍ | 28/200 [00:08<00:51, 3.36it/s]\n 14%|█▍ | 29/200 [00:09<00:50, 3.36it/s]\n 15%|█▌ | 30/200 [00:09<00:50, 3.36it/s]\n 16%|█▌ | 31/200 [00:09<00:50, 3.35it/s]\n 16%|█▌ | 32/200 [00:09<00:50, 3.35it/s]\n 16%|█▋ | 33/200 [00:10<00:49, 3.35it/s]\n 17%|█▋ | 34/200 [00:10<00:49, 3.35it/s]\n 18%|█▊ | 35/200 [00:10<00:49, 3.35it/s]\n 18%|█▊ | 36/200 [00:11<00:49, 3.35it/s]\n 18%|█▊ | 37/200 [00:11<00:48, 3.35it/s]\n 19%|█▉ | 38/200 [00:11<00:48, 3.35it/s]\n 20%|█▉ | 39/200 [00:12<00:48, 3.35it/s]\n 20%|██ | 40/200 [00:12<00:47, 3.34it/s]\n 20%|██ | 41/200 [00:12<00:47, 3.35it/s]\n 21%|██ | 42/200 [00:12<00:47, 3.35it/s]\n 22%|██▏ | 43/200 [00:13<00:46, 3.35it/s]\n 22%|██▏ | 44/200 [00:13<00:46, 3.35it/s]\n 22%|██▎ | 45/200 [00:13<00:46, 3.35it/s]\n 23%|██▎ | 46/200 [00:14<00:45, 3.35it/s]\n 24%|██▎ | 47/200 [00:14<00:45, 3.35it/s]\n 24%|██▍ | 48/200 [00:14<00:45, 3.36it/s]\n 24%|██▍ | 49/200 [00:15<00:44, 3.36it/s]\n 25%|██▌ | 50/200 [00:15<00:44, 3.36it/s]\n 26%|██▌ | 51/200 [00:15<00:44, 3.37it/s]\n 26%|██▌ | 52/200 [00:15<00:43, 3.37it/s]\n 26%|██▋ | 53/200 [00:16<00:43, 3.37it/s]\n 27%|██▋ | 54/200 [00:16<00:43, 3.37it/s]\n 28%|██▊ | 55/200 [00:16<00:43, 3.37it/s]\n 28%|██▊ | 56/200 [00:17<00:42, 3.37it/s]\n 28%|██▊ | 57/200 [00:17<00:42, 3.37it/s]\n 29%|██▉ | 58/200 [00:17<00:42, 3.37it/s]\n 30%|██▉ | 59/200 [00:18<00:41, 3.37it/s]\n 30%|███ | 60/200 [00:18<00:41, 3.37it/s]\n 30%|███ | 61/200 [00:18<00:41, 3.37it/s]\n 31%|███ | 62/200 [00:18<00:40, 3.37it/s]\n 32%|███▏ | 63/200 [00:19<00:40, 3.37it/s]\n 32%|███▏ | 64/200 [00:19<00:40, 3.37it/s]\n 32%|███▎ | 65/200 [00:19<00:40, 3.37it/s]\n 33%|███▎ | 66/200 [00:20<00:39, 3.37it/s]\n 34%|███▎ | 67/200 [00:20<00:39, 3.36it/s]\n 34%|███▍ | 68/200 [00:20<00:39, 3.36it/s]\n 34%|███▍ | 69/200 [00:20<00:38, 3.37it/s]\n 35%|███▌ | 70/200 [00:21<00:38, 3.37it/s]\n 36%|███▌ | 71/200 [00:21<00:38, 3.37it/s]\n 36%|███▌ | 72/200 [00:21<00:38, 3.37it/s]\n 36%|███▋ | 73/200 [00:22<00:37, 3.37it/s]\n 37%|███▋ | 74/200 [00:22<00:37, 3.36it/s]\n 38%|███▊ | 75/200 [00:22<00:37, 3.36it/s]\n 38%|███▊ | 76/200 [00:23<00:36, 3.36it/s]\n 38%|███▊ | 77/200 [00:23<00:36, 3.36it/s]\n 39%|███▉ | 78/200 [00:23<00:36, 3.36it/s]\n 40%|███▉ | 79/200 [00:23<00:35, 3.36it/s]\n 40%|████ | 80/200 [00:24<00:35, 3.36it/s]\n 40%|████ | 81/200 [00:24<00:35, 3.36it/s]\n 41%|████ | 82/200 [00:24<00:35, 3.36it/s]\n 42%|████▏ | 83/200 [00:25<00:34, 3.36it/s]\n 42%|████▏ | 84/200 [00:25<00:34, 3.36it/s]\n 42%|████▎ | 85/200 [00:25<00:34, 3.36it/s]\n 43%|████▎ | 86/200 [00:26<00:34, 3.32it/s]\n 44%|████▎ | 87/200 [00:26<00:33, 3.33it/s]\n 44%|████▍ | 88/200 [00:26<00:33, 3.34it/s]\n 44%|████▍ | 89/200 [00:26<00:33, 3.34it/s]\n 45%|████▌ | 90/200 [00:27<00:32, 3.35it/s]\n 46%|████▌ | 91/200 [00:27<00:32, 3.35it/s]\n 46%|████▌ | 92/200 [00:27<00:32, 3.35it/s]\n 46%|████▋ | 93/200 [00:28<00:31, 3.35it/s]\n 47%|████▋ | 94/200 [00:28<00:31, 3.36it/s]\n 48%|████▊ | 95/200 [00:28<00:31, 3.36it/s]\n 48%|████▊ | 96/200 [00:29<00:30, 3.36it/s]\n 48%|████▊ | 97/200 [00:29<00:30, 3.35it/s]\n 49%|████▉ | 98/200 [00:29<00:30, 3.35it/s]\n 50%|████▉ | 99/200 [00:29<00:30, 3.35it/s]\n 50%|█████ | 100/200 [00:30<00:29, 3.35it/s]\n 50%|█████ | 101/200 [00:30<00:29, 3.35it/s]\n 51%|█████ | 102/200 [00:30<00:29, 3.35it/s]\n 52%|█████▏ | 103/200 [00:31<00:28, 3.35it/s]\n 52%|█████▏ | 104/200 [00:31<00:28, 3.35it/s]\n 52%|█████▎ | 105/200 [00:31<00:28, 3.34it/s]\n 53%|█████▎ | 106/200 [00:32<00:28, 3.35it/s]\n 54%|█████▎ | 107/200 [00:32<00:27, 3.35it/s]\n 54%|█████▍ | 108/200 [00:32<00:27, 3.35it/s]\n 55%|█████▍ | 109/200 [00:32<00:27, 3.35it/s]\n 55%|█████▌ | 110/200 [00:33<00:26, 3.35it/s]\n 56%|█████▌ | 111/200 [00:33<00:26, 3.35it/s]\n 56%|█████▌ | 112/200 [00:33<00:26, 3.34it/s]\n 56%|█████▋ | 113/200 [00:34<00:26, 3.35it/s]\n 57%|█████▋ | 114/200 [00:34<00:25, 3.34it/s]\n 57%|█████▊ | 115/200 [00:34<00:25, 3.34it/s]\n 58%|█████▊ | 116/200 [00:35<00:25, 3.34it/s]\n 58%|█████▊ | 117/200 [00:35<00:24, 3.34it/s]\n 59%|█████▉ | 118/200 [00:35<00:24, 3.34it/s]\n 60%|█████▉ | 119/200 [00:35<00:24, 3.34it/s]\n 60%|██████ | 120/200 [00:36<00:23, 3.34it/s]\n 60%|██████ | 121/200 [00:36<00:23, 3.34it/s]\n 61%|██████ | 122/200 [00:36<00:23, 3.34it/s]\n 62%|██████▏ | 123/200 [00:37<00:23, 3.34it/s]\n 62%|██████▏ | 124/200 [00:37<00:22, 3.34it/s]\n 62%|██████▎ | 125/200 [00:37<00:22, 3.34it/s]\n 63%|██████▎ | 126/200 [00:38<00:22, 3.34it/s]\n 64%|██████▎ | 127/200 [00:38<00:21, 3.34it/s]\n 64%|██████▍ | 128/200 [00:38<00:21, 3.33it/s]\n 64%|██████▍ | 129/200 [00:38<00:21, 3.34it/s]\n 65%|██████▌ | 130/200 [00:39<00:20, 3.34it/s]\n 66%|██████▌ | 131/200 [00:39<00:20, 3.34it/s]\n 66%|██████▌ | 132/200 [00:39<00:20, 3.33it/s]\n 66%|██████▋ | 133/200 [00:40<00:20, 3.34it/s]\n 67%|██████▋ | 134/200 [00:40<00:19, 3.34it/s]\n 68%|██████▊ | 135/200 [00:40<00:19, 3.34it/s]\n 68%|██████▊ | 136/200 [00:41<00:19, 3.34it/s]\n 68%|██████▊ | 137/200 [00:41<00:18, 3.34it/s]\n 69%|██████▉ | 138/200 [00:41<00:18, 3.34it/s]\n 70%|██████▉ | 139/200 [00:41<00:18, 3.34it/s]\n 70%|███████ | 140/200 [00:42<00:17, 3.33it/s]\n 70%|███████ | 141/200 [00:42<00:17, 3.34it/s]\n 71%|███████ | 142/200 [00:42<00:17, 3.34it/s]\n 72%|███████▏ | 143/200 [00:43<00:17, 3.34it/s]\n 72%|███████▏ | 144/200 [00:43<00:16, 3.33it/s]\n 72%|███████▎ | 145/200 [00:43<00:16, 3.33it/s]\n 73%|███████▎ | 146/200 [00:44<00:16, 3.33it/s]\n 74%|███████▎ | 147/200 [00:44<00:15, 3.33it/s]\n 74%|███████▍ | 148/200 [00:44<00:15, 3.33it/s]\n 74%|███████▍ | 149/200 [00:44<00:15, 3.34it/s]\n 75%|███████▌ | 150/200 [00:45<00:14, 3.34it/s]\n 76%|███████▌ | 151/200 [00:45<00:14, 3.34it/s]\n 76%|███████▌ | 152/200 [00:45<00:14, 3.34it/s]\n 76%|███████▋ | 153/200 [00:46<00:14, 3.34it/s]\n 77%|███████▋ | 154/200 [00:46<00:13, 3.34it/s]\n 78%|███████▊ | 155/200 [00:46<00:13, 3.34it/s]\n 78%|███████▊ | 156/200 [00:47<00:13, 3.34it/s]\n 78%|███████▊ | 157/200 [00:47<00:12, 3.34it/s]\n 79%|███████▉ | 158/200 [00:47<00:12, 3.34it/s]\n 80%|███████▉ | 159/200 [00:47<00:12, 3.33it/s]\n 80%|████████ | 160/200 [00:48<00:11, 3.33it/s]\n 80%|████████ | 161/200 [00:48<00:11, 3.33it/s]\n 81%|████████ | 162/200 [00:48<00:11, 3.33it/s]\n 82%|████████▏ | 163/200 [00:49<00:11, 3.33it/s]\n 82%|████████▏ | 164/200 [00:49<00:10, 3.33it/s]\n 82%|████████▎ | 165/200 [00:49<00:10, 3.33it/s]\n 83%|████████▎ | 166/200 [00:50<00:10, 3.33it/s]\n 84%|████████▎ | 167/200 [00:50<00:09, 3.33it/s]\n 84%|████████▍ | 168/200 [00:50<00:09, 3.33it/s]\n 84%|████████▍ | 169/200 [00:50<00:09, 3.33it/s]\n 85%|████████▌ | 170/200 [00:51<00:09, 3.33it/s]\n 86%|████████▌ | 171/200 [00:51<00:08, 3.33it/s]\n 86%|████████▌ | 172/200 [00:51<00:08, 3.33it/s]\n 86%|████████▋ | 173/200 [00:52<00:08, 3.33it/s]\n 87%|████████▋ | 174/200 [00:52<00:07, 3.33it/s]\n 88%|████████▊ | 175/200 [00:52<00:07, 3.33it/s]\n 88%|████████▊ | 176/200 [00:53<00:07, 3.33it/s]\n 88%|████████▊ | 177/200 [00:53<00:06, 3.33it/s]\n 89%|████████▉ | 178/200 [00:53<00:06, 3.33it/s]\n 90%|████████▉ | 179/200 [00:53<00:06, 3.33it/s]\n 90%|█████████ | 180/200 [00:54<00:06, 3.33it/s]\n 90%|█████████ | 181/200 [00:54<00:05, 3.33it/s]\n 91%|█████████ | 182/200 [00:54<00:05, 3.33it/s]\n 92%|█████████▏| 183/200 [00:55<00:05, 3.33it/s]\n 92%|█████████▏| 184/200 [00:55<00:04, 3.33it/s]\n 92%|█████████▎| 185/200 [00:55<00:04, 3.33it/s]\n 93%|█████████▎| 186/200 [00:56<00:04, 3.33it/s]\n 94%|█████████▎| 187/200 [00:56<00:03, 3.33it/s]\n 94%|█████████▍| 188/200 [00:56<00:03, 3.33it/s]\n 94%|█████████▍| 189/200 [00:56<00:03, 3.33it/s]\n 95%|█████████▌| 190/200 [00:57<00:03, 3.33it/s]\n 96%|█████████▌| 191/200 [00:57<00:02, 3.33it/s]\n 96%|█████████▌| 192/200 [00:57<00:02, 3.33it/s]\n 96%|█████████▋| 193/200 [00:58<00:02, 3.33it/s]\n 97%|█████████▋| 194/200 [00:58<00:01, 3.33it/s]\n 98%|█████████▊| 195/200 [00:58<00:01, 3.33it/s]\n 98%|█████████▊| 196/200 [00:59<00:01, 3.33it/s]\n 98%|█████████▊| 197/200 [00:59<00:00, 3.33it/s]\n 99%|█████████▉| 198/200 [00:59<00:00, 3.33it/s]\n100%|█████████▉| 199/200 [00:59<00:00, 3.33it/s]\n100%|██████████| 200/200 [01:00<00:00, 3.33it/s]\n100%|██████████| 200/200 [01:00<00:00, 3.32it/s]", "metrics": { "predict_time": 63.166646, "total_time": 119.861953 }, "output": "https://pbxt.replicate.delivery/N7Nbj35GZk4nNtq1cM2syhTakCgB20BG5LeNnew6eXrBd8mjA/output.png", "started_at": "2023-10-30T22:42:41.813448Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zmt5i7lbn3lle4dk4lfcvm5huy", "cancel": "https://api.replicate.com/v1/predictions/zmt5i7lbn3lle4dk4lfcvm5huy/cancel" }, "version": "592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55" }
Generated inUsing seed: 130264517 0%| | 0/200 [00:00<?, ?it/s] 0%| | 1/200 [00:00<02:34, 1.28it/s] 1%| | 2/200 [00:01<01:37, 2.03it/s] 2%|▏ | 3/200 [00:01<01:19, 2.49it/s] 2%|▏ | 4/200 [00:01<01:10, 2.77it/s] 2%|▎ | 5/200 [00:01<01:05, 2.96it/s] 3%|▎ | 6/200 [00:02<01:02, 3.09it/s] 4%|▎ | 7/200 [00:02<01:00, 3.18it/s] 4%|▍ | 8/200 [00:02<00:59, 3.24it/s] 4%|▍ | 9/200 [00:03<00:58, 3.28it/s] 5%|▌ | 10/200 [00:03<00:57, 3.31it/s] 6%|▌ | 11/200 [00:03<00:56, 3.33it/s] 6%|▌ | 12/200 [00:04<00:56, 3.34it/s] 6%|▋ | 13/200 [00:04<00:55, 3.35it/s] 7%|▋ | 14/200 [00:04<00:55, 3.35it/s] 8%|▊ | 15/200 [00:04<00:55, 3.36it/s] 8%|▊ | 16/200 [00:05<00:54, 3.36it/s] 8%|▊ | 17/200 [00:05<00:54, 3.36it/s] 9%|▉ | 18/200 [00:05<00:54, 3.36it/s] 10%|▉ | 19/200 [00:06<00:53, 3.36it/s] 10%|█ | 20/200 [00:06<00:53, 3.36it/s] 10%|█ | 21/200 [00:06<00:53, 3.36it/s] 11%|█ | 22/200 [00:07<00:53, 3.36it/s] 12%|█▏ | 23/200 [00:07<00:52, 3.36it/s] 12%|█▏ | 24/200 [00:07<00:52, 3.36it/s] 12%|█▎ | 25/200 [00:07<00:52, 3.36it/s] 13%|█▎ | 26/200 [00:08<00:51, 3.36it/s] 14%|█▎ | 27/200 [00:08<00:51, 3.36it/s] 14%|█▍ | 28/200 [00:08<00:51, 3.36it/s] 14%|█▍ | 29/200 [00:09<00:50, 3.36it/s] 15%|█▌ | 30/200 [00:09<00:50, 3.36it/s] 16%|█▌ | 31/200 [00:09<00:50, 3.35it/s] 16%|█▌ | 32/200 [00:09<00:50, 3.35it/s] 16%|█▋ | 33/200 [00:10<00:49, 3.35it/s] 17%|█▋ | 34/200 [00:10<00:49, 3.35it/s] 18%|█▊ | 35/200 [00:10<00:49, 3.35it/s] 18%|█▊ | 36/200 [00:11<00:49, 3.35it/s] 18%|█▊ | 37/200 [00:11<00:48, 3.35it/s] 19%|█▉ | 38/200 [00:11<00:48, 3.35it/s] 20%|█▉ | 39/200 [00:12<00:48, 3.35it/s] 20%|██ | 40/200 [00:12<00:47, 3.34it/s] 20%|██ | 41/200 [00:12<00:47, 3.35it/s] 21%|██ | 42/200 [00:12<00:47, 3.35it/s] 22%|██▏ | 43/200 [00:13<00:46, 3.35it/s] 22%|██▏ | 44/200 [00:13<00:46, 3.35it/s] 22%|██▎ | 45/200 [00:13<00:46, 3.35it/s] 23%|██▎ | 46/200 [00:14<00:45, 3.35it/s] 24%|██▎ | 47/200 [00:14<00:45, 3.35it/s] 24%|██▍ | 48/200 [00:14<00:45, 3.36it/s] 24%|██▍ | 49/200 [00:15<00:44, 3.36it/s] 25%|██▌ | 50/200 [00:15<00:44, 3.36it/s] 26%|██▌ | 51/200 [00:15<00:44, 3.37it/s] 26%|██▌ | 52/200 [00:15<00:43, 3.37it/s] 26%|██▋ | 53/200 [00:16<00:43, 3.37it/s] 27%|██▋ | 54/200 [00:16<00:43, 3.37it/s] 28%|██▊ | 55/200 [00:16<00:43, 3.37it/s] 28%|██▊ | 56/200 [00:17<00:42, 3.37it/s] 28%|██▊ | 57/200 [00:17<00:42, 3.37it/s] 29%|██▉ | 58/200 [00:17<00:42, 3.37it/s] 30%|██▉ | 59/200 [00:18<00:41, 3.37it/s] 30%|███ | 60/200 [00:18<00:41, 3.37it/s] 30%|███ | 61/200 [00:18<00:41, 3.37it/s] 31%|███ | 62/200 [00:18<00:40, 3.37it/s] 32%|███▏ | 63/200 [00:19<00:40, 3.37it/s] 32%|███▏ | 64/200 [00:19<00:40, 3.37it/s] 32%|███▎ | 65/200 [00:19<00:40, 3.37it/s] 33%|███▎ | 66/200 [00:20<00:39, 3.37it/s] 34%|███▎ | 67/200 [00:20<00:39, 3.36it/s] 34%|███▍ | 68/200 [00:20<00:39, 3.36it/s] 34%|███▍ | 69/200 [00:20<00:38, 3.37it/s] 35%|███▌ | 70/200 [00:21<00:38, 3.37it/s] 36%|███▌ | 71/200 [00:21<00:38, 3.37it/s] 36%|███▌ | 72/200 [00:21<00:38, 3.37it/s] 36%|███▋ | 73/200 [00:22<00:37, 3.37it/s] 37%|███▋ | 74/200 [00:22<00:37, 3.36it/s] 38%|███▊ | 75/200 [00:22<00:37, 3.36it/s] 38%|███▊ | 76/200 [00:23<00:36, 3.36it/s] 38%|███▊ | 77/200 [00:23<00:36, 3.36it/s] 39%|███▉ | 78/200 [00:23<00:36, 3.36it/s] 40%|███▉ | 79/200 [00:23<00:35, 3.36it/s] 40%|████ | 80/200 [00:24<00:35, 3.36it/s] 40%|████ | 81/200 [00:24<00:35, 3.36it/s] 41%|████ | 82/200 [00:24<00:35, 3.36it/s] 42%|████▏ | 83/200 [00:25<00:34, 3.36it/s] 42%|████▏ | 84/200 [00:25<00:34, 3.36it/s] 42%|████▎ | 85/200 [00:25<00:34, 3.36it/s] 43%|████▎ | 86/200 [00:26<00:34, 3.32it/s] 44%|████▎ | 87/200 [00:26<00:33, 3.33it/s] 44%|████▍ | 88/200 [00:26<00:33, 3.34it/s] 44%|████▍ | 89/200 [00:26<00:33, 3.34it/s] 45%|████▌ | 90/200 [00:27<00:32, 3.35it/s] 46%|████▌ | 91/200 [00:27<00:32, 3.35it/s] 46%|████▌ | 92/200 [00:27<00:32, 3.35it/s] 46%|████▋ | 93/200 [00:28<00:31, 3.35it/s] 47%|████▋ | 94/200 [00:28<00:31, 3.36it/s] 48%|████▊ | 95/200 [00:28<00:31, 3.36it/s] 48%|████▊ | 96/200 [00:29<00:30, 3.36it/s] 48%|████▊ | 97/200 [00:29<00:30, 3.35it/s] 49%|████▉ | 98/200 [00:29<00:30, 3.35it/s] 50%|████▉ | 99/200 [00:29<00:30, 3.35it/s] 50%|█████ | 100/200 [00:30<00:29, 3.35it/s] 50%|█████ | 101/200 [00:30<00:29, 3.35it/s] 51%|█████ | 102/200 [00:30<00:29, 3.35it/s] 52%|█████▏ | 103/200 [00:31<00:28, 3.35it/s] 52%|█████▏ | 104/200 [00:31<00:28, 3.35it/s] 52%|█████▎ | 105/200 [00:31<00:28, 3.34it/s] 53%|█████▎ | 106/200 [00:32<00:28, 3.35it/s] 54%|█████▎ | 107/200 [00:32<00:27, 3.35it/s] 54%|█████▍ | 108/200 [00:32<00:27, 3.35it/s] 55%|█████▍ | 109/200 [00:32<00:27, 3.35it/s] 55%|█████▌ | 110/200 [00:33<00:26, 3.35it/s] 56%|█████▌ | 111/200 [00:33<00:26, 3.35it/s] 56%|█████▌ | 112/200 [00:33<00:26, 3.34it/s] 56%|█████▋ | 113/200 [00:34<00:26, 3.35it/s] 57%|█████▋ | 114/200 [00:34<00:25, 3.34it/s] 57%|█████▊ | 115/200 [00:34<00:25, 3.34it/s] 58%|█████▊ | 116/200 [00:35<00:25, 3.34it/s] 58%|█████▊ | 117/200 [00:35<00:24, 3.34it/s] 59%|█████▉ | 118/200 [00:35<00:24, 3.34it/s] 60%|█████▉ | 119/200 [00:35<00:24, 3.34it/s] 60%|██████ | 120/200 [00:36<00:23, 3.34it/s] 60%|██████ | 121/200 [00:36<00:23, 3.34it/s] 61%|██████ | 122/200 [00:36<00:23, 3.34it/s] 62%|██████▏ | 123/200 [00:37<00:23, 3.34it/s] 62%|██████▏ | 124/200 [00:37<00:22, 3.34it/s] 62%|██████▎ | 125/200 [00:37<00:22, 3.34it/s] 63%|██████▎ | 126/200 [00:38<00:22, 3.34it/s] 64%|██████▎ | 127/200 [00:38<00:21, 3.34it/s] 64%|██████▍ | 128/200 [00:38<00:21, 3.33it/s] 64%|██████▍ | 129/200 [00:38<00:21, 3.34it/s] 65%|██████▌ | 130/200 [00:39<00:20, 3.34it/s] 66%|██████▌ | 131/200 [00:39<00:20, 3.34it/s] 66%|██████▌ | 132/200 [00:39<00:20, 3.33it/s] 66%|██████▋ | 133/200 [00:40<00:20, 3.34it/s] 67%|██████▋ | 134/200 [00:40<00:19, 3.34it/s] 68%|██████▊ | 135/200 [00:40<00:19, 3.34it/s] 68%|██████▊ | 136/200 [00:41<00:19, 3.34it/s] 68%|██████▊ | 137/200 [00:41<00:18, 3.34it/s] 69%|██████▉ | 138/200 [00:41<00:18, 3.34it/s] 70%|██████▉ | 139/200 [00:41<00:18, 3.34it/s] 70%|███████ | 140/200 [00:42<00:17, 3.33it/s] 70%|███████ | 141/200 [00:42<00:17, 3.34it/s] 71%|███████ | 142/200 [00:42<00:17, 3.34it/s] 72%|███████▏ | 143/200 [00:43<00:17, 3.34it/s] 72%|███████▏ | 144/200 [00:43<00:16, 3.33it/s] 72%|███████▎ | 145/200 [00:43<00:16, 3.33it/s] 73%|███████▎ | 146/200 [00:44<00:16, 3.33it/s] 74%|███████▎ | 147/200 [00:44<00:15, 3.33it/s] 74%|███████▍ | 148/200 [00:44<00:15, 3.33it/s] 74%|███████▍ | 149/200 [00:44<00:15, 3.34it/s] 75%|███████▌ | 150/200 [00:45<00:14, 3.34it/s] 76%|███████▌ | 151/200 [00:45<00:14, 3.34it/s] 76%|███████▌ | 152/200 [00:45<00:14, 3.34it/s] 76%|███████▋ | 153/200 [00:46<00:14, 3.34it/s] 77%|███████▋ | 154/200 [00:46<00:13, 3.34it/s] 78%|███████▊ | 155/200 [00:46<00:13, 3.34it/s] 78%|███████▊ | 156/200 [00:47<00:13, 3.34it/s] 78%|███████▊ | 157/200 [00:47<00:12, 3.34it/s] 79%|███████▉ | 158/200 [00:47<00:12, 3.34it/s] 80%|███████▉ | 159/200 [00:47<00:12, 3.33it/s] 80%|████████ | 160/200 [00:48<00:11, 3.33it/s] 80%|████████ | 161/200 [00:48<00:11, 3.33it/s] 81%|████████ | 162/200 [00:48<00:11, 3.33it/s] 82%|████████▏ | 163/200 [00:49<00:11, 3.33it/s] 82%|████████▏ | 164/200 [00:49<00:10, 3.33it/s] 82%|████████▎ | 165/200 [00:49<00:10, 3.33it/s] 83%|████████▎ | 166/200 [00:50<00:10, 3.33it/s] 84%|████████▎ | 167/200 [00:50<00:09, 3.33it/s] 84%|████████▍ | 168/200 [00:50<00:09, 3.33it/s] 84%|████████▍ | 169/200 [00:50<00:09, 3.33it/s] 85%|████████▌ | 170/200 [00:51<00:09, 3.33it/s] 86%|████████▌ | 171/200 [00:51<00:08, 3.33it/s] 86%|████████▌ | 172/200 [00:51<00:08, 3.33it/s] 86%|████████▋ | 173/200 [00:52<00:08, 3.33it/s] 87%|████████▋ | 174/200 [00:52<00:07, 3.33it/s] 88%|████████▊ | 175/200 [00:52<00:07, 3.33it/s] 88%|████████▊ | 176/200 [00:53<00:07, 3.33it/s] 88%|████████▊ | 177/200 [00:53<00:06, 3.33it/s] 89%|████████▉ | 178/200 [00:53<00:06, 3.33it/s] 90%|████████▉ | 179/200 [00:53<00:06, 3.33it/s] 90%|█████████ | 180/200 [00:54<00:06, 3.33it/s] 90%|█████████ | 181/200 [00:54<00:05, 3.33it/s] 91%|█████████ | 182/200 [00:54<00:05, 3.33it/s] 92%|█████████▏| 183/200 [00:55<00:05, 3.33it/s] 92%|█████████▏| 184/200 [00:55<00:04, 3.33it/s] 92%|█████████▎| 185/200 [00:55<00:04, 3.33it/s] 93%|█████████▎| 186/200 [00:56<00:04, 3.33it/s] 94%|█████████▎| 187/200 [00:56<00:03, 3.33it/s] 94%|█████████▍| 188/200 [00:56<00:03, 3.33it/s] 94%|█████████▍| 189/200 [00:56<00:03, 3.33it/s] 95%|█████████▌| 190/200 [00:57<00:03, 3.33it/s] 96%|█████████▌| 191/200 [00:57<00:02, 3.33it/s] 96%|█████████▌| 192/200 [00:57<00:02, 3.33it/s] 96%|█████████▋| 193/200 [00:58<00:02, 3.33it/s] 97%|█████████▋| 194/200 [00:58<00:01, 3.33it/s] 98%|█████████▊| 195/200 [00:58<00:01, 3.33it/s] 98%|█████████▊| 196/200 [00:59<00:01, 3.33it/s] 98%|█████████▊| 197/200 [00:59<00:00, 3.33it/s] 99%|█████████▉| 198/200 [00:59<00:00, 3.33it/s] 100%|█████████▉| 199/200 [00:59<00:00, 3.33it/s] 100%|██████████| 200/200 [01:00<00:00, 3.33it/s] 100%|██████████| 200/200 [01:00<00:00, 3.32it/s]
Prediction
qr2ai/img2paint_controlnet:592691cfIDv5zofxlb37tyzbxw2tqm2pvkgqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- 7649977190
- prompt
- Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.
- qr_data
- null
- condition_scale
- 0.63
- negative_prompt
- low quality, bad quality, nsfw
- num_inference_steps
- 50
{ "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.", "qr_data": null, "condition_scale": 0.63, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "qr2ai/img2paint_controlnet:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", { input: { seed: 7649977190, image: "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", prompt: "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.", condition_scale: 0.63, negative_prompt: "low quality, bad quality, nsfw", num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "qr2ai/img2paint_controlnet:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", input={ "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.", "condition_scale": 0.63, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", "input": { "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.", "condition_scale": 0.63, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-30T22:49:43.389344Z", "created_at": "2023-10-30T22:49:26.081220Z", "data_removed": false, "error": null, "id": "v5zofxlb37tyzbxw2tqm2pvkgq", "input": { "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.", "qr_data": null, "condition_scale": 0.63, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 }, "logs": "Using seed: 7649977190\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:14, 3.38it/s]\n 4%|▍ | 2/50 [00:00<00:14, 3.36it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.37it/s]\n 8%|▊ | 4/50 [00:01<00:13, 3.37it/s]\n 10%|█ | 5/50 [00:01<00:13, 3.36it/s]\n 12%|█▏ | 6/50 [00:01<00:13, 3.37it/s]\n 14%|█▍ | 7/50 [00:02<00:12, 3.37it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.37it/s]\n 18%|█▊ | 9/50 [00:02<00:12, 3.37it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.37it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.37it/s]\n 24%|██▍ | 12/50 [00:03<00:11, 3.36it/s]\n 26%|██▌ | 13/50 [00:03<00:11, 3.36it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.36it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.36it/s]\n 32%|███▏ | 16/50 [00:04<00:10, 3.36it/s]\n 34%|███▍ | 17/50 [00:05<00:09, 3.36it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.36it/s]\n 38%|███▊ | 19/50 [00:05<00:09, 3.36it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.36it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.36it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.35it/s]\n 46%|████▌ | 23/50 [00:06<00:08, 3.35it/s]\n 48%|████▊ | 24/50 [00:07<00:07, 3.35it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.35it/s]\n 52%|█████▏ | 26/50 [00:07<00:07, 3.35it/s]\n 54%|█████▍ | 27/50 [00:08<00:06, 3.35it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.35it/s]\n 58%|█████▊ | 29/50 [00:08<00:06, 3.35it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.35it/s]\n 62%|██████▏ | 31/50 [00:09<00:05, 3.35it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.35it/s]\n 66%|██████▌ | 33/50 [00:09<00:05, 3.35it/s]\n 68%|██████▊ | 34/50 [00:10<00:04, 3.35it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.34it/s]\n 72%|███████▏ | 36/50 [00:10<00:04, 3.34it/s]\n 74%|███████▍ | 37/50 [00:11<00:03, 3.34it/s]\n 76%|███████▌ | 38/50 [00:11<00:03, 3.34it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.34it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.34it/s]\n 82%|████████▏ | 41/50 [00:12<00:02, 3.34it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.34it/s]\n 86%|████████▌ | 43/50 [00:12<00:02, 3.34it/s]\n 88%|████████▊ | 44/50 [00:13<00:01, 3.34it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 3.33it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.33it/s]\n 94%|█████████▍| 47/50 [00:14<00:00, 3.34it/s]\n 96%|█████████▌| 48/50 [00:14<00:00, 3.34it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.34it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.34it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.35it/s]", "metrics": { "predict_time": 17.335607, "total_time": 17.308124 }, "output": "https://pbxt.replicate.delivery/mHYOMCayF0ofGC7wyiYPjHlMrDZJfWpDe08pE8rbYywNo8mjA/output.png", "started_at": "2023-10-30T22:49:26.053737Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/v5zofxlb37tyzbxw2tqm2pvkgq", "cancel": "https://api.replicate.com/v1/predictions/v5zofxlb37tyzbxw2tqm2pvkgq/cancel" }, "version": "592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55" }
Generated inUsing seed: 7649977190 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:14, 3.38it/s] 4%|▍ | 2/50 [00:00<00:14, 3.36it/s] 6%|▌ | 3/50 [00:00<00:13, 3.37it/s] 8%|▊ | 4/50 [00:01<00:13, 3.37it/s] 10%|█ | 5/50 [00:01<00:13, 3.36it/s] 12%|█▏ | 6/50 [00:01<00:13, 3.37it/s] 14%|█▍ | 7/50 [00:02<00:12, 3.37it/s] 16%|█▌ | 8/50 [00:02<00:12, 3.37it/s] 18%|█▊ | 9/50 [00:02<00:12, 3.37it/s] 20%|██ | 10/50 [00:02<00:11, 3.37it/s] 22%|██▏ | 11/50 [00:03<00:11, 3.37it/s] 24%|██▍ | 12/50 [00:03<00:11, 3.36it/s] 26%|██▌ | 13/50 [00:03<00:11, 3.36it/s] 28%|██▊ | 14/50 [00:04<00:10, 3.36it/s] 30%|███ | 15/50 [00:04<00:10, 3.36it/s] 32%|███▏ | 16/50 [00:04<00:10, 3.36it/s] 34%|███▍ | 17/50 [00:05<00:09, 3.36it/s] 36%|███▌ | 18/50 [00:05<00:09, 3.36it/s] 38%|███▊ | 19/50 [00:05<00:09, 3.36it/s] 40%|████ | 20/50 [00:05<00:08, 3.36it/s] 42%|████▏ | 21/50 [00:06<00:08, 3.36it/s] 44%|████▍ | 22/50 [00:06<00:08, 3.35it/s] 46%|████▌ | 23/50 [00:06<00:08, 3.35it/s] 48%|████▊ | 24/50 [00:07<00:07, 3.35it/s] 50%|█████ | 25/50 [00:07<00:07, 3.35it/s] 52%|█████▏ | 26/50 [00:07<00:07, 3.35it/s] 54%|█████▍ | 27/50 [00:08<00:06, 3.35it/s] 56%|█████▌ | 28/50 [00:08<00:06, 3.35it/s] 58%|█████▊ | 29/50 [00:08<00:06, 3.35it/s] 60%|██████ | 30/50 [00:08<00:05, 3.35it/s] 62%|██████▏ | 31/50 [00:09<00:05, 3.35it/s] 64%|██████▍ | 32/50 [00:09<00:05, 3.35it/s] 66%|██████▌ | 33/50 [00:09<00:05, 3.35it/s] 68%|██████▊ | 34/50 [00:10<00:04, 3.35it/s] 70%|███████ | 35/50 [00:10<00:04, 3.34it/s] 72%|███████▏ | 36/50 [00:10<00:04, 3.34it/s] 74%|███████▍ | 37/50 [00:11<00:03, 3.34it/s] 76%|███████▌ | 38/50 [00:11<00:03, 3.34it/s] 78%|███████▊ | 39/50 [00:11<00:03, 3.34it/s] 80%|████████ | 40/50 [00:11<00:02, 3.34it/s] 82%|████████▏ | 41/50 [00:12<00:02, 3.34it/s] 84%|████████▍ | 42/50 [00:12<00:02, 3.34it/s] 86%|████████▌ | 43/50 [00:12<00:02, 3.34it/s] 88%|████████▊ | 44/50 [00:13<00:01, 3.34it/s] 90%|█████████ | 45/50 [00:13<00:01, 3.33it/s] 92%|█████████▏| 46/50 [00:13<00:01, 3.33it/s] 94%|█████████▍| 47/50 [00:14<00:00, 3.34it/s] 96%|█████████▌| 48/50 [00:14<00:00, 3.34it/s] 98%|█████████▊| 49/50 [00:14<00:00, 3.34it/s] 100%|██████████| 50/50 [00:14<00:00, 3.34it/s] 100%|██████████| 50/50 [00:14<00:00, 3.35it/s]
Prediction
qr2ai/img2paint_controlnet:592691cfIDr2emsjdbb6d6tfamwvini345laStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- 7649977190
- prompt
- 3d oil paintings of pretty flowers, in the style of embroidery, anatoly metlan, colorful arrangements, light white and light orange, dark white and light magenta, use of fabric, contest winner
- qr_data
- null
- condition_scale
- 0.7
- negative_prompt
- low quality, bad quality, nsfw
- num_inference_steps
- 50
{ "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "3d oil paintings of pretty flowers, in the style of embroidery, anatoly metlan, colorful arrangements, light white and light orange, dark white and light magenta, use of fabric, contest winner", "qr_data": null, "condition_scale": 0.7, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "qr2ai/img2paint_controlnet:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", { input: { seed: 7649977190, image: "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", prompt: "3d oil paintings of pretty flowers, in the style of embroidery, anatoly metlan, colorful arrangements, light white and light orange, dark white and light magenta, use of fabric, contest winner", condition_scale: 0.7, negative_prompt: "low quality, bad quality, nsfw", num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "qr2ai/img2paint_controlnet:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", input={ "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "3d oil paintings of pretty flowers, in the style of embroidery, anatoly metlan, colorful arrangements, light white and light orange, dark white and light magenta, use of fabric, contest winner", "condition_scale": 0.7, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55", "input": { "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "3d oil paintings of pretty flowers, in the style of embroidery, anatoly metlan, colorful arrangements, light white and light orange, dark white and light magenta, use of fabric, contest winner", "condition_scale": 0.7, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-30T22:51:29.575323Z", "created_at": "2023-10-30T22:51:12.293097Z", "data_removed": false, "error": null, "id": "r2emsjdbb6d6tfamwvini345la", "input": { "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "3d oil paintings of pretty flowers, in the style of embroidery, anatoly metlan, colorful arrangements, light white and light orange, dark white and light magenta, use of fabric, contest winner", "qr_data": null, "condition_scale": 0.7, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 }, "logs": "Using seed: 7649977190\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:14, 3.40it/s]\n 4%|▍ | 2/50 [00:00<00:14, 3.38it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.37it/s]\n 8%|▊ | 4/50 [00:01<00:13, 3.36it/s]\n 10%|█ | 5/50 [00:01<00:13, 3.36it/s]\n 12%|█▏ | 6/50 [00:01<00:13, 3.36it/s]\n 14%|█▍ | 7/50 [00:02<00:12, 3.35it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.35it/s]\n 18%|█▊ | 9/50 [00:02<00:12, 3.35it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.35it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.35it/s]\n 24%|██▍ | 12/50 [00:03<00:11, 3.35it/s]\n 26%|██▌ | 13/50 [00:03<00:11, 3.35it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.35it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.36it/s]\n 32%|███▏ | 16/50 [00:04<00:10, 3.36it/s]\n 34%|███▍ | 17/50 [00:05<00:09, 3.37it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.37it/s]\n 38%|███▊ | 19/50 [00:05<00:09, 3.37it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.37it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.37it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.37it/s]\n 46%|████▌ | 23/50 [00:06<00:08, 3.37it/s]\n 48%|████▊ | 24/50 [00:07<00:07, 3.37it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.37it/s]\n 52%|█████▏ | 26/50 [00:07<00:07, 3.37it/s]\n 54%|█████▍ | 27/50 [00:08<00:06, 3.37it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.36it/s]\n 58%|█████▊ | 29/50 [00:08<00:06, 3.37it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.37it/s]\n 62%|██████▏ | 31/50 [00:09<00:05, 3.37it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.36it/s]\n 66%|██████▌ | 33/50 [00:09<00:05, 3.36it/s]\n 68%|██████▊ | 34/50 [00:10<00:04, 3.37it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.36it/s]\n 72%|███████▏ | 36/50 [00:10<00:04, 3.36it/s]\n 74%|███████▍ | 37/50 [00:11<00:03, 3.37it/s]\n 76%|███████▌ | 38/50 [00:11<00:03, 3.36it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.36it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.36it/s]\n 82%|████████▏ | 41/50 [00:12<00:02, 3.36it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.36it/s]\n 86%|████████▌ | 43/50 [00:12<00:02, 3.36it/s]\n 88%|████████▊ | 44/50 [00:13<00:01, 3.36it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 3.36it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.36it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.36it/s]\n 96%|█████████▌| 48/50 [00:14<00:00, 3.36it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.36it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.36it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.36it/s]", "metrics": { "predict_time": 17.287356, "total_time": 17.282226 }, "output": "https://pbxt.replicate.delivery/QhJnjMtsQqJ4Ml5fvdJIT9gSUaWivYDVy0zF6fdzh2swVemjA/output.png", "started_at": "2023-10-30T22:51:12.287967Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/r2emsjdbb6d6tfamwvini345la", "cancel": "https://api.replicate.com/v1/predictions/r2emsjdbb6d6tfamwvini345la/cancel" }, "version": "592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55" }
Generated inUsing seed: 7649977190 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:14, 3.40it/s] 4%|▍ | 2/50 [00:00<00:14, 3.38it/s] 6%|▌ | 3/50 [00:00<00:13, 3.37it/s] 8%|▊ | 4/50 [00:01<00:13, 3.36it/s] 10%|█ | 5/50 [00:01<00:13, 3.36it/s] 12%|█▏ | 6/50 [00:01<00:13, 3.36it/s] 14%|█▍ | 7/50 [00:02<00:12, 3.35it/s] 16%|█▌ | 8/50 [00:02<00:12, 3.35it/s] 18%|█▊ | 9/50 [00:02<00:12, 3.35it/s] 20%|██ | 10/50 [00:02<00:11, 3.35it/s] 22%|██▏ | 11/50 [00:03<00:11, 3.35it/s] 24%|██▍ | 12/50 [00:03<00:11, 3.35it/s] 26%|██▌ | 13/50 [00:03<00:11, 3.35it/s] 28%|██▊ | 14/50 [00:04<00:10, 3.35it/s] 30%|███ | 15/50 [00:04<00:10, 3.36it/s] 32%|███▏ | 16/50 [00:04<00:10, 3.36it/s] 34%|███▍ | 17/50 [00:05<00:09, 3.37it/s] 36%|███▌ | 18/50 [00:05<00:09, 3.37it/s] 38%|███▊ | 19/50 [00:05<00:09, 3.37it/s] 40%|████ | 20/50 [00:05<00:08, 3.37it/s] 42%|████▏ | 21/50 [00:06<00:08, 3.37it/s] 44%|████▍ | 22/50 [00:06<00:08, 3.37it/s] 46%|████▌ | 23/50 [00:06<00:08, 3.37it/s] 48%|████▊ | 24/50 [00:07<00:07, 3.37it/s] 50%|█████ | 25/50 [00:07<00:07, 3.37it/s] 52%|█████▏ | 26/50 [00:07<00:07, 3.37it/s] 54%|█████▍ | 27/50 [00:08<00:06, 3.37it/s] 56%|█████▌ | 28/50 [00:08<00:06, 3.36it/s] 58%|█████▊ | 29/50 [00:08<00:06, 3.37it/s] 60%|██████ | 30/50 [00:08<00:05, 3.37it/s] 62%|██████▏ | 31/50 [00:09<00:05, 3.37it/s] 64%|██████▍ | 32/50 [00:09<00:05, 3.36it/s] 66%|██████▌ | 33/50 [00:09<00:05, 3.36it/s] 68%|██████▊ | 34/50 [00:10<00:04, 3.37it/s] 70%|███████ | 35/50 [00:10<00:04, 3.36it/s] 72%|███████▏ | 36/50 [00:10<00:04, 3.36it/s] 74%|███████▍ | 37/50 [00:11<00:03, 3.37it/s] 76%|███████▌ | 38/50 [00:11<00:03, 3.36it/s] 78%|███████▊ | 39/50 [00:11<00:03, 3.36it/s] 80%|████████ | 40/50 [00:11<00:02, 3.36it/s] 82%|████████▏ | 41/50 [00:12<00:02, 3.36it/s] 84%|████████▍ | 42/50 [00:12<00:02, 3.36it/s] 86%|████████▌ | 43/50 [00:12<00:02, 3.36it/s] 88%|████████▊ | 44/50 [00:13<00:01, 3.36it/s] 90%|█████████ | 45/50 [00:13<00:01, 3.36it/s] 92%|█████████▏| 46/50 [00:13<00:01, 3.36it/s] 94%|█████████▍| 47/50 [00:13<00:00, 3.36it/s] 96%|█████████▌| 48/50 [00:14<00:00, 3.36it/s] 98%|█████████▊| 49/50 [00:14<00:00, 3.36it/s] 100%|██████████| 50/50 [00:14<00:00, 3.36it/s] 100%|██████████| 50/50 [00:14<00:00, 3.36it/s]
Want to make some of these yourself?
Run this model