You're looking at a specific version of this model. Jump to the model overview.
qr2ai /img2paint_controlnet:1ee999c2
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"qr2ai/img2paint_controlnet:1ee999c2e1882ec9815de071fa1dd49a30c0c79d9ff2b5642a7dc0a1eabb3bf9",
{
input: {
seed: 0,
prompt: "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting",
condition_scale: 0.5,
negative_prompt: "low quality, bad quality, sketches",
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"qr2ai/img2paint_controlnet:1ee999c2e1882ec9815de071fa1dd49a30c0c79d9ff2b5642a7dc0a1eabb3bf9",
input={
"seed": 0,
"prompt": "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting",
"condition_scale": 0.5,
"negative_prompt": "low quality, bad quality, sketches",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "1ee999c2e1882ec9815de071fa1dd49a30c0c79d9ff2b5642a7dc0a1eabb3bf9",
"input": {
"seed": 0,
"prompt": "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting",
"condition_scale": 0.5,
"negative_prompt": "low quality, bad quality, sketches",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/qr2ai/img2paint_controlnet@sha256:1ee999c2e1882ec9815de071fa1dd49a30c0c79d9ff2b5642a7dc0a1eabb3bf9 \
-i 'seed=0' \
-i 'prompt="aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"' \
-i 'condition_scale=0.5' \
-i 'negative_prompt="low quality, bad quality, sketches"' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/qr2ai/img2paint_controlnet@sha256:1ee999c2e1882ec9815de071fa1dd49a30c0c79d9ff2b5642a7dc0a1eabb3bf9
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 0, "prompt": "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting", "condition_scale": 0.5, "negative_prompt": "low quality, bad quality, sketches", "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.