raoumer
/
isrrescnet
Deep Iterative Residual Convolutional Network for Single Image Super-Resolution
Run raoumer/isrrescnet with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
image |
string
|
Input image to be upscaled
|
{
"type": "object",
"properties": {
"image": {
"type": "string",
"format": "uri",
"x-order": 0,
"description": "Input image to be upscaled"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{
"type": "array",
"items": {
"type": "object",
"properties": {
"file": {
"type": "string",
"format": "uri",
"x-order": 0
},
"text": {
"type": "string",
"x-order": 1
}
}
},
"x-cog-array-type": "iterator"
}