replicate-internal/pipelines-skater-trainer

Public
8 runs

Run replicate-internal/pipelines-skater-trainer with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
video
string
Video clip of skateboard trick attempt
trick_name
string
ollie
Name of the skateboard trick being attempted
max_frames
integer
20

Min: 5

Max: 30

Maximum number of frames to analyze
fps
integer
3

Min: 1

Max: 30

Frames per second
detailed_analysis
boolean
True
Include detailed frame-by-frame analysis
debug
boolean
False
Enable debug output in frame analysis

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "object",
  "title": "Output",
  "required": [
    "trick_name",
    "overall_assessment",
    "key_strengths",
    "areas_for_improvement",
    "frame_analyses",
    "recommended_practice",
    "difficulty_rating",
    "biomechanical_insights",
    "progression_timeline"
  ],
  "properties": {
    "trick_name": {
      "type": "string",
      "title": "Trick Name"
    },
    "key_strengths": {
      "type": "array",
      "items": {
        "type": "string"
      },
      "title": "Key Strengths"
    },
    "frame_analyses": {
      "type": "array",
      "items": {
        "type": "object",
        "title": "FrameAnalysis",
        "required": [
          "timestamp",
          "phase",
          "technical_assessment",
          "coaching_tips",
          "execution_score",
          "landing_success",
          "landing_assessment"
        ],
        "properties": {
          "phase": {
            "type": "string",
            "title": "Phase"
          },
          "timestamp": {
            "type": "number",
            "title": "Timestamp"
          },
          "coaching_tips": {
            "type": "string",
            "title": "Coaching Tips"
          },
          "execution_score": {
            "type": "number",
            "title": "Execution Score"
          },
          "landing_success": {
            "type": "boolean",
            "title": "Landing Success"
          },
          "landing_assessment": {
            "type": "string",
            "title": "Landing Assessment"
          },
          "technical_assessment": {
            "type": "string",
            "title": "Technical Assessment"
          }
        },
        "description": "Analysis of a single frame using vision analysis"
      },
      "title": "Frame Analyses"
    },
    "difficulty_rating": {
      "type": "string",
      "title": "Difficulty Rating"
    },
    "overall_assessment": {
      "type": "string",
      "title": "Overall Assessment"
    },
    "progression_timeline": {
      "type": "string",
      "title": "Progression Timeline"
    },
    "recommended_practice": {
      "type": "array",
      "items": {
        "type": "string"
      },
      "title": "Recommended Practice"
    },
    "areas_for_improvement": {
      "type": "array",
      "items": {
        "type": "string"
      },
      "title": "Areas For Improvement"
    },
    "biomechanical_insights": {
      "type": "array",
      "items": {
        "type": "string"
      },
      "title": "Biomechanical Insights"
    }
  },
  "description": "Complete multi-model coaching analysis"
}