replicate/seamless-texture


Classifies images with ResNet-50

Train your own custom Stable Diffusion model using a small set of images

A language model by Google for tasks like classification, summarization, and more

Transformers implementation of the LLaMA language model

A large language model by EleutherAI

This is a language model that can be used to obtain document embeddings suitable for downstream tasks like semantic search and clustering.

Train your own custom RVC model
Generates goo

Train subjects or styles faster than ever

Flux 2D Game Asset LoRA
Prediction
replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839IDa4341zfg8drm80cpzqk9erv8ncStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- FSTL A field of tall grass swaying in multiple directions, seamless texture
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "FSTL A field of tall grass swaying in multiple directions, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", { input: { model: "dev", prompt: "FSTL A field of tall grass swaying in multiple directions, seamless texture", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", input={ "model": "dev", "prompt": "FSTL A field of tall grass swaying in multiple directions, seamless texture", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", "input": { "model": "dev", "prompt": "FSTL A field of tall grass swaying in multiple directions, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-05-23T16:08:27.833806Z", "created_at": "2025-05-23T16:08:12.611000Z", "data_removed": false, "error": null, "id": "a4341zfg8drm80cpzqk9erv8nc", "input": { "model": "dev", "prompt": "FSTL A field of tall grass swaying in multiple directions, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "free=26630810513408\nDownloading weights\n2025-05-23T16:08:18Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpakwz3fad/weights url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar\n2025-05-23T16:08:18Z | INFO | [ Cache Service ] enabled=true scheme=http target=hermes.services.svc.cluster.local\n2025-05-23T16:08:19Z | INFO | [ Complete ] dest=/tmp/tmpakwz3fad/weights size=\"172 MB\" total_elapsed=1.641s url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar\nDownloaded weights in 1.66s\nLoaded LoRAs in 2.23s\nUsing seed: 33274\nPrompt: FSTL A field of tall grass swaying in multiple directions, seamless texture\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.82it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.32it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.08it/s]\n 14%|█▍ | 4/28 [00:00<00:06, 3.98it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.93it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.89it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.87it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.85it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.84it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.83it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.83it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.82it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.82it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.82it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.82it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.82it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.81it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.81it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.81it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.82it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.82it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.81it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.82it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.81it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.81it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.81it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.82it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.82it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.84it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 9.803095693, "total_time": 15.222806 }, "output": [ "https://replicate.delivery/xezq/abkZHWMux3K6AJpeCnepEUwwIBwQoAT8LhVF2fNxqzK37JfSB/out-0.webp" ], "started_at": "2025-05-23T16:08:18.030711Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-oe6ohgpflc3awldufsjaz5mycoo5pcocbgrj6i4st3obrdfal2ba", "get": "https://api.replicate.com/v1/predictions/a4341zfg8drm80cpzqk9erv8nc", "cancel": "https://api.replicate.com/v1/predictions/a4341zfg8drm80cpzqk9erv8nc/cancel" }, "version": "9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839" }
Generated infree=26630810513408 Downloading weights 2025-05-23T16:08:18Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpakwz3fad/weights url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar 2025-05-23T16:08:18Z | INFO | [ Cache Service ] enabled=true scheme=http target=hermes.services.svc.cluster.local 2025-05-23T16:08:19Z | INFO | [ Complete ] dest=/tmp/tmpakwz3fad/weights size="172 MB" total_elapsed=1.641s url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar Downloaded weights in 1.66s Loaded LoRAs in 2.23s Using seed: 33274 Prompt: FSTL A field of tall grass swaying in multiple directions, seamless texture [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.82it/s] 7%|▋ | 2/28 [00:00<00:06, 4.32it/s] 11%|█ | 3/28 [00:00<00:06, 4.08it/s] 14%|█▍ | 4/28 [00:00<00:06, 3.98it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.93it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.89it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.87it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.85it/s] 32%|███▏ | 9/28 [00:02<00:04, 3.84it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.83it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.83it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.82it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.82it/s] 50%|█████ | 14/28 [00:03<00:03, 3.82it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.82it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.82it/s] 61%|██████ | 17/28 [00:04<00:02, 3.81it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.81it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.81it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.82it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.82it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.81it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.82it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.81it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.81it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.81it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.82it/s] 100%|██████████| 28/28 [00:07<00:00, 3.82it/s] 100%|██████████| 28/28 [00:07<00:00, 3.84it/s] Total safe images: 1 out of 1
Prediction
replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839IDs5y22r8ytdrmc0cpzqksb00hy0StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- FSTL A mosaic pattern of iridescent glass tiles in turquoise and purple, seamless texture
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "FSTL A mosaic pattern of iridescent glass tiles in turquoise and purple, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", { input: { model: "dev", prompt: "FSTL A mosaic pattern of iridescent glass tiles in turquoise and purple, seamless texture", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", input={ "model": "dev", "prompt": "FSTL A mosaic pattern of iridescent glass tiles in turquoise and purple, seamless texture", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", "input": { "model": "dev", "prompt": "FSTL A mosaic pattern of iridescent glass tiles in turquoise and purple, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-05-23T16:08:34.238800Z", "created_at": "2025-05-23T16:08:24.531000Z", "data_removed": false, "error": null, "id": "s5y22r8ytdrmc0cpzqksb00hy0", "input": { "model": "dev", "prompt": "FSTL A mosaic pattern of iridescent glass tiles in turquoise and purple, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "free=27756272676864\nDownloading weights\n2025-05-23T16:08:24Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp3t0d1e53/weights url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar\n2025-05-23T16:08:24Z | INFO | [ Cache Service ] enabled=true scheme=http target=hermes.services.svc.cluster.local\n2025-05-23T16:08:26Z | INFO | [ Complete ] dest=/tmp/tmp3t0d1e53/weights size=\"172 MB\" total_elapsed=1.479s url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar\nDownloaded weights in 1.50s\nLoaded LoRAs in 2.03s\nUsing seed: 41554\nPrompt: FSTL A mosaic pattern of iridescent glass tiles in turquoise and purple, seamless texture\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.82it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.33it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.08it/s]\n 14%|█▍ | 4/28 [00:00<00:06, 3.97it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.92it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.89it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.87it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.85it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.84it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.84it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.84it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.83it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.83it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.83it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.82it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.83it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.83it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.83it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.83it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.82it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.82it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.82it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.82it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.82it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.83it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.82it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.83it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.82it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.85it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 9.65689506, "total_time": 9.7078 }, "output": [ "https://replicate.delivery/xezq/M741K8ZZHPagCJGc6y4e2wVJphNhHaXvXMNA55chhEcBfkvUA/out-0.webp" ], "started_at": "2025-05-23T16:08:24.581905Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-gowwyvhogrvopfxyopt6v3wja7fq4fijriubhqvbuogoq6hu3lla", "get": "https://api.replicate.com/v1/predictions/s5y22r8ytdrmc0cpzqksb00hy0", "cancel": "https://api.replicate.com/v1/predictions/s5y22r8ytdrmc0cpzqksb00hy0/cancel" }, "version": "9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839" }
Generated infree=27756272676864 Downloading weights 2025-05-23T16:08:24Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp3t0d1e53/weights url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar 2025-05-23T16:08:24Z | INFO | [ Cache Service ] enabled=true scheme=http target=hermes.services.svc.cluster.local 2025-05-23T16:08:26Z | INFO | [ Complete ] dest=/tmp/tmp3t0d1e53/weights size="172 MB" total_elapsed=1.479s url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar Downloaded weights in 1.50s Loaded LoRAs in 2.03s Using seed: 41554 Prompt: FSTL A mosaic pattern of iridescent glass tiles in turquoise and purple, seamless texture [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.82it/s] 7%|▋ | 2/28 [00:00<00:06, 4.33it/s] 11%|█ | 3/28 [00:00<00:06, 4.08it/s] 14%|█▍ | 4/28 [00:00<00:06, 3.97it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.92it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.89it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.87it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.85it/s] 32%|███▏ | 9/28 [00:02<00:04, 3.84it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.84it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.84it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.83it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.83it/s] 50%|█████ | 14/28 [00:03<00:03, 3.83it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.82it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.83it/s] 61%|██████ | 17/28 [00:04<00:02, 3.83it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.83it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.83it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.82it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.82it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.82it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.82it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.82it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.83it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.82it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.83it/s] 100%|██████████| 28/28 [00:07<00:00, 3.82it/s] 100%|██████████| 28/28 [00:07<00:00, 3.85it/s] Total safe images: 1 out of 1
Prediction
replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839IDrz27twbmcxrma0cpzqkvxkcn2rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- FSTL A dense carpet of autumn leaves in red and orange hues, seamless texture
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "FSTL A dense carpet of autumn leaves in red and orange hues, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", { input: { model: "dev", prompt: "FSTL A dense carpet of autumn leaves in red and orange hues, seamless texture", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", input={ "model": "dev", "prompt": "FSTL A dense carpet of autumn leaves in red and orange hues, seamless texture", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run replicate/seamless-texture using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "replicate/seamless-texture:9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839", "input": { "model": "dev", "prompt": "FSTL A dense carpet of autumn leaves in red and orange hues, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-05-23T16:08:57.381422Z", "created_at": "2025-05-23T16:08:46.439000Z", "data_removed": false, "error": null, "id": "rz27twbmcxrma0cpzqkvxkcn2r", "input": { "model": "dev", "prompt": "FSTL A dense carpet of autumn leaves in red and orange hues, seamless texture", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "free=27075716165632\nDownloading weights\n2025-05-23T16:08:46Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp2l4rk2mr/weights url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar\n2025-05-23T16:08:46Z | INFO | [ Cache Service ] enabled=true scheme=http target=hermes.services.svc.cluster.local\n2025-05-23T16:08:49Z | INFO | [ Complete ] dest=/tmp/tmp2l4rk2mr/weights size=\"172 MB\" total_elapsed=2.795s url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar\nDownloaded weights in 2.81s\nLoaded LoRAs in 3.37s\nUsing seed: 62762\nPrompt: FSTL A dense carpet of autumn leaves in red and orange hues, seamless texture\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.81it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.32it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.08it/s]\n 14%|█▍ | 4/28 [00:00<00:06, 3.98it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.92it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.89it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.87it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.85it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.84it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.84it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.83it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.83it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.83it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.83it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.83it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.83it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.83it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.83it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.83it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.83it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.83it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.83it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.83it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.83it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.83it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.83it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.83it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.82it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.85it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 10.922059604, "total_time": 10.942422 }, "output": [ "https://replicate.delivery/xezq/kfQ98chMORX4ZS6ezieyHASqLBMY0HiLxorscdoZjGPy8JfSB/out-0.webp" ], "started_at": "2025-05-23T16:08:46.459362Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-xpq2ychba37kx53oktwx4dfgmiwyr6ju33ojg66oh5u2f5efpssq", "get": "https://api.replicate.com/v1/predictions/rz27twbmcxrma0cpzqkvxkcn2r", "cancel": "https://api.replicate.com/v1/predictions/rz27twbmcxrma0cpzqkvxkcn2r/cancel" }, "version": "9a59c0dce189bfe8a7fcb379c497713500ff959652c4e7874023f15983dec839" }
Generated infree=27075716165632 Downloading weights 2025-05-23T16:08:46Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp2l4rk2mr/weights url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar 2025-05-23T16:08:46Z | INFO | [ Cache Service ] enabled=true scheme=http target=hermes.services.svc.cluster.local 2025-05-23T16:08:49Z | INFO | [ Complete ] dest=/tmp/tmp2l4rk2mr/weights size="172 MB" total_elapsed=2.795s url=https://replicate.delivery/xezq/agJO5FSC0p7ICZIll2UFkPqK2XaEbWFDDICk3yYZ7HTUP5LF/flux-lora.tar Downloaded weights in 2.81s Loaded LoRAs in 3.37s Using seed: 62762 Prompt: FSTL A dense carpet of autumn leaves in red and orange hues, seamless texture [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.81it/s] 7%|▋ | 2/28 [00:00<00:06, 4.32it/s] 11%|█ | 3/28 [00:00<00:06, 4.08it/s] 14%|█▍ | 4/28 [00:00<00:06, 3.98it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.92it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.89it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.87it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.85it/s] 32%|███▏ | 9/28 [00:02<00:04, 3.84it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.84it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.83it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.83it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.83it/s] 50%|█████ | 14/28 [00:03<00:03, 3.83it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.83it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.83it/s] 61%|██████ | 17/28 [00:04<00:02, 3.83it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.83it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.83it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.83it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.83it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.83it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.83it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.83it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.83it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.83it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.83it/s] 100%|██████████| 28/28 [00:07<00:00, 3.82it/s] 100%|██████████| 28/28 [00:07<00:00, 3.85it/s] Total safe images: 1 out of 1
Want to make some of these yourself?
Run this model