replicategithubwc
/
niji-style-sdxl
- Public
- 11.5K runs
Run replicategithubwc/niji-style-sdxl with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
a photo of an astronaut riding a horse on mars
|
Input prompt
|
negative_prompt |
string
|
Specify things to not see in the output
|
|
image_prompt |
string
|
Input image prompt for image_prompt mode
|
|
image |
string
|
Input image for img2img or inpaint mode
|
|
mask |
string
|
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
|
|
width |
integer
|
1024
|
Width of output image
|
height |
integer
|
1024
|
Height of output image
|
num_outputs |
integer
|
1
Min: 1 Max: 4 |
Number of images to output.
|
num_inference_steps |
integer
|
50
Min: 1 Max: 500 |
Number of denoising steps
|
guidance_scale |
number
|
7.5
Min: 1 Max: 20 |
Scale for classifier-free guidance
|
scheduler |
string
(enum)
|
K_EULER_ANCESTRAL
Options: DDIM, K_EULER, DPMSolverMultistep, K_EULER_ANCESTRAL, PNDM, KLMS, DEISMultistepScheduler, DPM++_SDE_Karras |
Choose a scheduler.
|
prompt_strength |
number
|
0.8
Max: 1 |
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
|
prompt_mode |
string
(enum)
|
prompt
Options: prompt, image_prompt |
Choose a prompt mode. Default value prompt uses regular generation while image_prompt uses IP-Adapter to do image prompting.
|
image_prompt_method |
string
(enum)
|
style_and_layout
Options: style_and_layout, style |
Choose a image prompt method: Style only or Style and layout.
|
{
"type": "object",
"title": "Input",
"properties": {
"mask": {
"type": "string",
"title": "Mask",
"format": "uri",
"x-order": 4,
"description": "Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted."
},
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 12,
"description": "Random seed. Leave blank to randomize the seed"
},
"image": {
"type": "string",
"title": "Image",
"format": "uri",
"x-order": 3,
"description": "Input image for img2img or inpaint mode"
},
"width": {
"type": "integer",
"title": "Width",
"default": 1024,
"x-order": 5,
"description": "Width of output image"
},
"height": {
"type": "integer",
"title": "Height",
"default": 1024,
"x-order": 6,
"description": "Height of output image"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "a photo of an astronaut riding a horse on mars",
"x-order": 0,
"description": "Input prompt"
},
"scheduler": {
"enum": [
"DDIM",
"K_EULER",
"DPMSolverMultistep",
"K_EULER_ANCESTRAL",
"PNDM",
"KLMS",
"DEISMultistepScheduler",
"DPM++_SDE_Karras"
],
"type": "string",
"title": "scheduler",
"description": "Choose a scheduler.",
"default": "K_EULER_ANCESTRAL",
"x-order": 10
},
"num_outputs": {
"type": "integer",
"title": "Num Outputs",
"default": 1,
"maximum": 4,
"minimum": 1,
"x-order": 7,
"description": "Number of images to output."
},
"prompt_mode": {
"enum": [
"prompt",
"image_prompt"
],
"type": "string",
"title": "prompt_mode",
"description": "Choose a prompt mode. Default value prompt uses regular generation while image_prompt uses IP-Adapter to do image prompting.",
"default": "prompt",
"x-order": 13
},
"image_prompt": {
"type": "string",
"title": "Image Prompt",
"format": "uri",
"x-order": 2,
"description": "Input image prompt for image_prompt mode"
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 7.5,
"maximum": 20,
"minimum": 1,
"x-order": 9,
"description": "Scale for classifier-free guidance"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"x-order": 1,
"description": "Specify things to not see in the output"
},
"prompt_strength": {
"type": "number",
"title": "Prompt Strength",
"default": 0.8,
"maximum": 1,
"minimum": 0,
"x-order": 11,
"description": "Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image"
},
"image_prompt_method": {
"enum": [
"style_and_layout",
"style"
],
"type": "string",
"title": "image_prompt_method",
"description": "Choose a image prompt method: Style only or Style and layout.",
"default": "style_and_layout",
"x-order": 14
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 50,
"maximum": 500,
"minimum": 1,
"x-order": 8,
"description": "Number of denoising steps"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}