You're looking at a specific version of this model. Jump to the model overview.
rinnakk /japanese-stable-diffusion:183d9142
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run rinnakk/japanese-stable-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"rinnakk/japanese-stable-diffusion:183d91429024984ac421394b65b2de4d0a51733a371d5dc38e18bac200bda4be",
{
input: {
prompt: "サラリーマン 油絵",
num_outputs: 1,
guidance_scale: 7.5,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run rinnakk/japanese-stable-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"rinnakk/japanese-stable-diffusion:183d91429024984ac421394b65b2de4d0a51733a371d5dc38e18bac200bda4be",
input={
"prompt": "サラリーマン 油絵",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run rinnakk/japanese-stable-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "183d91429024984ac421394b65b2de4d0a51733a371d5dc38e18bac200bda4be",
"input": {
"prompt": "サラリーマン 油絵",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/rinnakk/japanese-stable-diffusion@sha256:183d91429024984ac421394b65b2de4d0a51733a371d5dc38e18bac200bda4be \
-i 'prompt="サラリーマン 油絵"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/rinnakk/japanese-stable-diffusion@sha256:183d91429024984ac421394b65b2de4d0a51733a371d5dc38e18bac200bda4be
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "prompt": "サラリーマン 油絵", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.023. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-09-17T22:25:55.638967Z",
"created_at": "2022-09-17T22:25:40.947972Z",
"data_removed": false,
"error": null,
"id": "6cswdgufubhlvpl3umwuzl2qpq",
"input": {
"prompt": "サラリーマン 油絵",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
},
"logs": "Using seed: 13560\nGlobal seed set to 13560\n\n 0%| | 0/51 [00:00<?, ?it/s]\n 2%|▏ | 1/51 [00:00<00:08, 5.81it/s]\n 4%|▍ | 2/51 [00:00<00:11, 4.33it/s]\n 6%|▌ | 3/51 [00:00<00:11, 4.12it/s]\n 8%|▊ | 4/51 [00:00<00:11, 4.01it/s]\n 10%|▉ | 5/51 [00:01<00:11, 3.95it/s]\n 12%|█▏ | 6/51 [00:01<00:11, 3.89it/s]\n 14%|█▎ | 7/51 [00:01<00:11, 3.88it/s]\n 16%|█▌ | 8/51 [00:02<00:11, 3.87it/s]\n 18%|█▊ | 9/51 [00:02<00:10, 3.87it/s]\n 20%|█▉ | 10/51 [00:02<00:10, 3.84it/s]\n 22%|██▏ | 11/51 [00:02<00:10, 3.83it/s]\n 24%|██▎ | 12/51 [00:03<00:10, 3.84it/s]\n 25%|██▌ | 13/51 [00:03<00:09, 3.85it/s]\n 27%|██▋ | 14/51 [00:03<00:09, 3.83it/s]\n 29%|██▉ | 15/51 [00:03<00:09, 3.83it/s]\n 31%|███▏ | 16/51 [00:04<00:09, 3.83it/s]\n 33%|███▎ | 17/51 [00:04<00:08, 3.84it/s]\n 35%|███▌ | 18/51 [00:04<00:08, 3.83it/s]\n 37%|███▋ | 19/51 [00:04<00:08, 3.82it/s]\n 39%|███▉ | 20/51 [00:05<00:08, 3.81it/s]\n 41%|████ | 21/51 [00:05<00:07, 3.81it/s]\n 43%|████▎ | 22/51 [00:05<00:07, 3.81it/s]\n 45%|████▌ | 23/51 [00:05<00:07, 3.80it/s]\n 47%|████▋ | 24/51 [00:06<00:07, 3.80it/s]\n 49%|████▉ | 25/51 [00:06<00:06, 3.81it/s]\n 51%|█████ | 26/51 [00:06<00:06, 3.81it/s]\n 53%|█████▎ | 27/51 [00:06<00:06, 3.80it/s]\n 55%|█████▍ | 28/51 [00:07<00:06, 3.81it/s]\n 57%|█████▋ | 29/51 [00:07<00:05, 3.82it/s]\n 59%|█████▉ | 30/51 [00:07<00:05, 3.82it/s]\n 61%|██████ | 31/51 [00:08<00:05, 3.82it/s]\n 63%|██████▎ | 32/51 [00:08<00:04, 3.83it/s]\n 65%|██████▍ | 33/51 [00:08<00:04, 3.82it/s]\n 67%|██████▋ | 34/51 [00:08<00:04, 3.81it/s]\n 69%|██████▊ | 35/51 [00:09<00:04, 3.82it/s]\n 71%|███████ | 36/51 [00:09<00:03, 3.82it/s]\n 73%|███████▎ | 37/51 [00:09<00:03, 3.82it/s]\n 75%|███████▍ | 38/51 [00:09<00:03, 3.81it/s]\n 76%|███████▋ | 39/51 [00:10<00:03, 3.81it/s]\n 78%|███████▊ | 40/51 [00:10<00:02, 3.80it/s]\n 80%|████████ | 41/51 [00:10<00:02, 3.81it/s]\n 82%|████████▏ | 42/51 [00:10<00:02, 3.81it/s]\n 84%|████████▍ | 43/51 [00:11<00:02, 3.82it/s]\n 86%|████████▋ | 44/51 [00:11<00:01, 3.81it/s]\n 88%|████████▊ | 45/51 [00:11<00:01, 3.81it/s]\n 90%|█████████ | 46/51 [00:11<00:01, 3.80it/s]\n 92%|█████████▏| 47/51 [00:12<00:01, 3.79it/s]\n 94%|█████████▍| 48/51 [00:12<00:00, 3.79it/s]\n 96%|█████████▌| 49/51 [00:12<00:00, 3.79it/s]\n 98%|█████████▊| 50/51 [00:13<00:00, 3.79it/s]\n100%|██████████| 51/51 [00:13<00:00, 3.79it/s]\n100%|██████████| 51/51 [00:13<00:00, 3.84it/s]",
"metrics": {
"predict_time": 14.481305,
"total_time": 14.690995
},
"output": [
"https://replicate.delivery/mgxm/fa193a69-05e6-471f-a8bf-96fe1ed65b1b/out-0.png"
],
"started_at": "2022-09-17T22:25:41.157662Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/6cswdgufubhlvpl3umwuzl2qpq",
"cancel": "https://api.replicate.com/v1/predictions/6cswdgufubhlvpl3umwuzl2qpq/cancel"
},
"version": "183d91429024984ac421394b65b2de4d0a51733a371d5dc38e18bac200bda4be"
}
Using seed: 13560
Global seed set to 13560
0%| | 0/51 [00:00<?, ?it/s]
2%|▏ | 1/51 [00:00<00:08, 5.81it/s]
4%|▍ | 2/51 [00:00<00:11, 4.33it/s]
6%|▌ | 3/51 [00:00<00:11, 4.12it/s]
8%|▊ | 4/51 [00:00<00:11, 4.01it/s]
10%|▉ | 5/51 [00:01<00:11, 3.95it/s]
12%|█▏ | 6/51 [00:01<00:11, 3.89it/s]
14%|█▎ | 7/51 [00:01<00:11, 3.88it/s]
16%|█▌ | 8/51 [00:02<00:11, 3.87it/s]
18%|█▊ | 9/51 [00:02<00:10, 3.87it/s]
20%|█▉ | 10/51 [00:02<00:10, 3.84it/s]
22%|██▏ | 11/51 [00:02<00:10, 3.83it/s]
24%|██▎ | 12/51 [00:03<00:10, 3.84it/s]
25%|██▌ | 13/51 [00:03<00:09, 3.85it/s]
27%|██▋ | 14/51 [00:03<00:09, 3.83it/s]
29%|██▉ | 15/51 [00:03<00:09, 3.83it/s]
31%|███▏ | 16/51 [00:04<00:09, 3.83it/s]
33%|███▎ | 17/51 [00:04<00:08, 3.84it/s]
35%|███▌ | 18/51 [00:04<00:08, 3.83it/s]
37%|███▋ | 19/51 [00:04<00:08, 3.82it/s]
39%|███▉ | 20/51 [00:05<00:08, 3.81it/s]
41%|████ | 21/51 [00:05<00:07, 3.81it/s]
43%|████▎ | 22/51 [00:05<00:07, 3.81it/s]
45%|████▌ | 23/51 [00:05<00:07, 3.80it/s]
47%|████▋ | 24/51 [00:06<00:07, 3.80it/s]
49%|████▉ | 25/51 [00:06<00:06, 3.81it/s]
51%|█████ | 26/51 [00:06<00:06, 3.81it/s]
53%|█████▎ | 27/51 [00:06<00:06, 3.80it/s]
55%|█████▍ | 28/51 [00:07<00:06, 3.81it/s]
57%|█████▋ | 29/51 [00:07<00:05, 3.82it/s]
59%|█████▉ | 30/51 [00:07<00:05, 3.82it/s]
61%|██████ | 31/51 [00:08<00:05, 3.82it/s]
63%|██████▎ | 32/51 [00:08<00:04, 3.83it/s]
65%|██████▍ | 33/51 [00:08<00:04, 3.82it/s]
67%|██████▋ | 34/51 [00:08<00:04, 3.81it/s]
69%|██████▊ | 35/51 [00:09<00:04, 3.82it/s]
71%|███████ | 36/51 [00:09<00:03, 3.82it/s]
73%|███████▎ | 37/51 [00:09<00:03, 3.82it/s]
75%|███████▍ | 38/51 [00:09<00:03, 3.81it/s]
76%|███████▋ | 39/51 [00:10<00:03, 3.81it/s]
78%|███████▊ | 40/51 [00:10<00:02, 3.80it/s]
80%|████████ | 41/51 [00:10<00:02, 3.81it/s]
82%|████████▏ | 42/51 [00:10<00:02, 3.81it/s]
84%|████████▍ | 43/51 [00:11<00:02, 3.82it/s]
86%|████████▋ | 44/51 [00:11<00:01, 3.81it/s]
88%|████████▊ | 45/51 [00:11<00:01, 3.81it/s]
90%|█████████ | 46/51 [00:11<00:01, 3.80it/s]
92%|█████████▏| 47/51 [00:12<00:01, 3.79it/s]
94%|█████████▍| 48/51 [00:12<00:00, 3.79it/s]
96%|█████████▌| 49/51 [00:12<00:00, 3.79it/s]
98%|█████████▊| 50/51 [00:13<00:00, 3.79it/s]
100%|██████████| 51/51 [00:13<00:00, 3.79it/s]
100%|██████████| 51/51 [00:13<00:00, 3.84it/s]