You're looking at a specific version of this model. Jump to the model overview.

shanginn /supir:34fc106a

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
model_name
string (enum)
SUPIR-v0Q

Options:

SUPIR-v0Q

Choose a model. SUPIR-v0Q is the default training settings with paper. SUPIR-v0F is high generalization and high image quality in most cases. Training with light degradation settings. Stage1 encoder of SUPIR-v0F remains more details when facing light degradations.
image
string
Low quality input image.
upscale
integer
2
Upsampling ratio of given inputs.
min_size
number
1024
Minimum resolution of output images.
edm_steps
integer
50

Min: 1

Max: 500

Number of steps for EDM Sampling Schedule.
use_llava
boolean
True
Use LLaVA model to get captions.
a_prompt
string
hyper detailed, maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect
Additive positive prompt for the inputs.
n_prompt
string
blurring, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth
Negative prompt for the inputs.
color_fix_type
string (enum)
Wavelet

Options:

None, AdaIn, Wavelet

Color Fixing Type..
s_stage1
integer
-1
Control Strength of Stage1 (negative means invalid).
s_churn
number
5
Original churn hy-param of EDM.
s_noise
number
1.003
Original noise hy-param of EDM.
s_cfg
number
7.5

Min: 1

Max: 20

Classifier-free guidance scale for prompts.
s_stage2
number
1
Control Strength of Stage2.
linear_CFG
boolean
False
Linearly (with sigma) increase CFG from 'spt_linear_CFG' to s_cfg.
linear_s_stage2
boolean
False
Linearly (with sigma) increase s_stage2 from 'spt_linear_s_stage2' to s_stage2.
spt_linear_CFG
number
1
Start point of linearly increasing CFG.
spt_linear_s_stage2
number
0
Start point of linearly increasing s_stage2.
seed
integer
Random seed. Leave blank to randomize the seed

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'format': 'uri', 'title': 'Output', 'type': 'string'}