You're looking at a specific version of this model. Jump to the model overview.
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
image |
string
|
Low quality input image.
|
|
captions |
string
|
a professional, detailed, high-quality photo
|
Captions for the image
|
upscale |
integer
|
2
|
Upsampling ratio of given inputs.
|
min_size |
number
|
1024
|
Minimum resolution of output images.
|
edm_steps |
integer
|
50
Min: 1 Max: 500 |
Number of steps for EDM Sampling Schedule.
|
a_prompt |
string
|
hyper detailed, maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect
|
Additive positive prompt for the inputs.
|
n_prompt |
string
|
blurring, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth
|
Negative prompt for the inputs.
|
color_fix_type |
string
(enum)
|
Wavelet
Options: None, AdaIn, Wavelet |
Color Fixing Type..
|
s_stage1 |
integer
|
-1
|
Control Strength of Stage1 (negative means invalid).
|
s_churn |
number
|
5
|
Original churn hy-param of EDM.
|
s_noise |
number
|
1.003
|
Original noise hy-param of EDM.
|
s_cfg |
number
|
7.5
Min: 1 Max: 20 |
Classifier-free guidance scale for prompts.
|
s_stage2 |
number
|
1
|
Control Strength of Stage2.
|
linear_cfg |
boolean
|
False
|
Linearly (with sigma) increase CFG from 'spt_linear_CFG' to s_cfg.
|
linear_s_stage2 |
boolean
|
False
|
Linearly (with sigma) increase s_stage2 from 'spt_linear_s_stage2' to s_stage2.
|
spt_linear_cfg |
number
|
1
|
Start point of linearly increasing CFG.
|
spt_linear_s_stage2 |
number
|
0
|
Start point of linearly increasing s_stage2.
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{'format': 'uri', 'title': 'Output', 'type': 'string'}