Readme
This model doesn't have a readme.
Retro style Flux Lora
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run shapestudio/floating-flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"shapestudio/floating-flux:aa10ada41ecbcb01fde7f496f95ae9ad431d474f24d493353be5982b33058b6d",
{
input: {
model: "dev",
prompt: "red car driving, blue sky in the style of TOK",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run shapestudio/floating-flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"shapestudio/floating-flux:aa10ada41ecbcb01fde7f496f95ae9ad431d474f24d493353be5982b33058b6d",
input={
"model": "dev",
"prompt": "red car driving, blue sky in the style of TOK",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run shapestudio/floating-flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "shapestudio/floating-flux:aa10ada41ecbcb01fde7f496f95ae9ad431d474f24d493353be5982b33058b6d",
"input": {
"model": "dev",
"prompt": "red car driving, blue sky in the style of TOK",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/shapestudio/floating-flux@sha256:aa10ada41ecbcb01fde7f496f95ae9ad431d474f24d493353be5982b33058b6d \
-i 'model="dev"' \
-i 'prompt="red car driving, blue sky in the style of TOK"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/shapestudio/floating-flux@sha256:aa10ada41ecbcb01fde7f496f95ae9ad431d474f24d493353be5982b33058b6d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "red car driving, blue sky in the style of TOK", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.015. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-20T07:12:21.588151Z",
"created_at": "2024-08-20T07:11:37.277000Z",
"data_removed": false,
"error": null,
"id": "tszgz2kx7nrm40chdtgbzakewr",
"input": {
"model": "dev",
"prompt": "red car driving, blue sky in the style of TOK",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 55961\nPrompt: red car driving, blue sky in the style of TOK\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.67it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.22it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.96it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.85it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.72it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.71it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.70it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.69it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.69it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.68it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.69it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.68it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.68it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.68it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.68it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.68it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.71it/s]",
"metrics": {
"predict_time": 17.292174517,
"total_time": 44.311151
},
"output": [
"https://replicate.delivery/yhqm/NeK1XWJ1sCyMOiwcNlFf9iDAai0uAOkd2p8n5KiTeiSre8RNB/out-0.webp"
],
"started_at": "2024-08-20T07:12:04.295976Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/tszgz2kx7nrm40chdtgbzakewr",
"cancel": "https://api.replicate.com/v1/predictions/tszgz2kx7nrm40chdtgbzakewr/cancel"
},
"version": "aa10ada41ecbcb01fde7f496f95ae9ad431d474f24d493353be5982b33058b6d"
}
Using seed: 55961
Prompt: red car driving, blue sky in the style of TOK
txt2img mode
Using dev model
Loading LoRA weights
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.67it/s]
7%|▋ | 2/28 [00:00<00:06, 4.22it/s]
11%|█ | 3/28 [00:00<00:06, 3.96it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.85it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.72it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.71it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.70it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.69it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.69it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]
50%|█████ | 14/28 [00:03<00:03, 3.68it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.69it/s]
61%|██████ | 17/28 [00:04<00:02, 3.68it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.68it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.68it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.68it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s]
100%|██████████| 28/28 [00:07<00:00, 3.68it/s]
100%|██████████| 28/28 [00:07<00:00, 3.71it/s]
This model costs approximately $0.015 to run on Replicate, or 66 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 11 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.015 to run on Replicate, but this varies depending on your inputs. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 55961
Prompt: red car driving, blue sky in the style of TOK
txt2img mode
Using dev model
Loading LoRA weights
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.67it/s]
7%|▋ | 2/28 [00:00<00:06, 4.22it/s]
11%|█ | 3/28 [00:00<00:06, 3.96it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.85it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.72it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.71it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.70it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.69it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.69it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]
50%|█████ | 14/28 [00:03<00:03, 3.68it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.69it/s]
61%|██████ | 17/28 [00:04<00:02, 3.68it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.68it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.68it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.68it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s]
100%|██████████| 28/28 [00:07<00:00, 3.68it/s]
100%|██████████| 28/28 [00:07<00:00, 3.71it/s]