Prediction
sidhq/vzug:49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911ModelIDqrz7cc3bfyjqllqnf5iuhnlafqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a modern kitchen, white marble, large island
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911", { input: { width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a modern kitchen, white marble, large island", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911", input={ "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911", "input": { "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-06T23:12:44.965987Z", "created_at": "2023-10-06T23:12:27.211485Z", "data_removed": false, "error": null, "id": "qrz7cc3bfyjqllqnf5iuhnlafq", "input": { "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": null, "metrics": { "predict_time": 16.442777, "total_time": 17.754502 }, "output": [ "https://pbxt.replicate.delivery/aybHGRPNFjbaLhU1Yx6f4xenBWCp33AXoTf2PVVg9JewmRuGB/out-0.png" ], "started_at": "2023-10-06T23:12:28.523210Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qrz7cc3bfyjqllqnf5iuhnlafq", "cancel": "https://api.replicate.com/v1/predictions/qrz7cc3bfyjqllqnf5iuhnlafq/cancel" }, "version": "49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911" }
Prediction
sidhq/vzug:49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911ModelIDbyq5mf3bswmjliievykj3ee5eaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a kitchen, modern, gray, stone, zebra pattern rug
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a kitchen, modern, gray, stone, zebra pattern rug", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911", { input: { width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a kitchen, modern, gray, stone, zebra pattern rug", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911", input={ "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a kitchen, modern, gray, stone, zebra pattern rug", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911", "input": { "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a kitchen, modern, gray, stone, zebra pattern rug", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-06T23:18:56.918195Z", "created_at": "2023-10-06T23:18:44.616282Z", "data_removed": false, "error": null, "id": "byq5mf3bswmjliievykj3ee5ea", "input": { "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a kitchen, modern, gray, stone, zebra pattern rug", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": null, "metrics": { "predict_time": 12.345787, "total_time": 12.301913 }, "output": [ "https://pbxt.replicate.delivery/JVRTvOWMOqoUEdQ0DDO7czHra29Z9k9jt9bFoPgPIfXwPy1IA/out-0.png" ], "started_at": "2023-10-06T23:18:44.572408Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/byq5mf3bswmjliievykj3ee5ea", "cancel": "https://api.replicate.com/v1/predictions/byq5mf3bswmjliievykj3ee5ea/cancel" }, "version": "49e0e9370b5361ffd56e753209b065f8d0d55f754cd404784c1b136595f90911" }
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelIDd4w5ep3b3xeqlgdvaviwf4q2euStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a modern kitchen, zebra carpet, wood floors, front view
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, zebra carpet, wood floors, front view", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a modern kitchen, zebra carpet, wood floors, front view", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, zebra carpet, wood floors, front view", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, zebra carpet, wood floors, front view", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T10:17:10.832329Z", "created_at": "2023-11-12T10:16:50.006732Z", "data_removed": false, "error": null, "id": "d4w5ep3b3xeqlgdvaviwf4q2eu", "input": { "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, zebra carpet, wood floors, front view", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 19920\nEnsuring enough disk space...\nFree disk space: 1419574206464\nDownloading weights: https://replicate.delivery/pbxt/JnKBppcawgaKCtkS6JrbIekKWYrfrNHvvQbSLSlqGTfi3KvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.315s (591 MB/s)\\nExtracted 186 MB in 0.051s (3.6 GB/s)\\n'\nDownloaded weights in 0.4972960948944092 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of <s0><s1>, a photo of a modern kitchen, zebra carpet, wood floors, front view\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.64it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.64it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.65it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.64it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.64it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.64it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.64it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.64it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.63it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.63it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.63it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.63it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.63it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.62it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.62it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.62it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.62it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.62it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.62it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.62it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.62it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.62it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.62it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.62it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.62it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.62it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.62it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.62it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.62it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.62it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.62it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.62it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.62it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.62it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.62it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.62it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.62it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.62it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.62it/s]", "metrics": { "predict_time": 16.966231, "total_time": 20.825597 }, "output": [ "https://replicate.delivery/pbxt/4b2DZgk3ci6EK92efkAzrhuaQAenlzk6wL2n9rA9OfvWCWeOC/out-0.png" ], "started_at": "2023-11-12T10:16:53.866098Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/d4w5ep3b3xeqlgdvaviwf4q2eu", "cancel": "https://api.replicate.com/v1/predictions/d4w5ep3b3xeqlgdvaviwf4q2eu/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 19920 Ensuring enough disk space... Free disk space: 1419574206464 Downloading weights: https://replicate.delivery/pbxt/JnKBppcawgaKCtkS6JrbIekKWYrfrNHvvQbSLSlqGTfi3KvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.315s (591 MB/s)\nExtracted 186 MB in 0.051s (3.6 GB/s)\n' Downloaded weights in 0.4972960948944092 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: In the style of <s0><s1>, a photo of a modern kitchen, zebra carpet, wood floors, front view txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.64it/s] 4%|▍ | 2/50 [00:00<00:13, 3.64it/s] 6%|▌ | 3/50 [00:00<00:12, 3.65it/s] 8%|▊ | 4/50 [00:01<00:12, 3.64it/s] 10%|█ | 5/50 [00:01<00:12, 3.64it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.64it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.64it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s] 20%|██ | 10/50 [00:02<00:10, 3.64it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.64it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.64it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.63it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.63it/s] 30%|███ | 15/50 [00:04<00:09, 3.63it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.63it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.63it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.62it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s] 40%|████ | 20/50 [00:05<00:08, 3.62it/s] 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s] 50%|█████ | 25/50 [00:06<00:06, 3.62it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.62it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.62it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.62it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.62it/s] 60%|██████ | 30/50 [00:08<00:05, 3.62it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.62it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.62it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.62it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.62it/s] 70%|███████ | 35/50 [00:09<00:04, 3.62it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.62it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.62it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.62it/s] 80%|████████ | 40/50 [00:11<00:02, 3.62it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.62it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.62it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.62it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.62it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.62it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.62it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.62it/s] 100%|██████████| 50/50 [00:13<00:00, 3.62it/s] 100%|██████████| 50/50 [00:13<00:00, 3.62it/s]
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelIDpxtfmnlbbuavg5d7uhkdoxzazaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of modern kitchen, oven, white marble
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/JrcvLghAOC7fOcuI0E3O45oFepbaQ1e3ssiQRwDKdpIJR9mZ/kitchen_before.jpeg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of modern kitchen, oven, white marble", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { image: "https://replicate.delivery/pbxt/JrcvLghAOC7fOcuI0E3O45oFepbaQ1e3ssiQRwDKdpIJR9mZ/kitchen_before.jpeg", width: 1024, height: 1024, prompt: "In the style of TOK, a photo of modern kitchen, oven, white marble", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "image": "https://replicate.delivery/pbxt/JrcvLghAOC7fOcuI0E3O45oFepbaQ1e3ssiQRwDKdpIJR9mZ/kitchen_before.jpeg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of modern kitchen, oven, white marble", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "image": "https://replicate.delivery/pbxt/JrcvLghAOC7fOcuI0E3O45oFepbaQ1e3ssiQRwDKdpIJR9mZ/kitchen_before.jpeg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of modern kitchen, oven, white marble", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T12:07:22.719665Z", "created_at": "2023-11-12T12:06:53.730319Z", "data_removed": false, "error": null, "id": "pxtfmnlbbuavg5d7uhkdoxzaza", "input": { "image": "https://replicate.delivery/pbxt/JrcvLghAOC7fOcuI0E3O45oFepbaQ1e3ssiQRwDKdpIJR9mZ/kitchen_before.jpeg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of modern kitchen, oven, white marble", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 50420\nEnsuring enough disk space...\nFree disk space: 1752990011392\nDownloading weights: https://replicate.delivery/pbxt/JnKBppcawgaKCtkS6JrbIekKWYrfrNHvvQbSLSlqGTfi3KvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.227s (818 MB/s)\\nExtracted 186 MB in 0.059s (3.2 GB/s)\\n'\nDownloaded weights in 0.3952369689941406 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of <s0><s1>, a photo of modern kitchen, oven, white marble\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:18, 2.12it/s]\n 5%|▌ | 2/40 [00:00<00:17, 2.14it/s]\n 8%|▊ | 3/40 [00:01<00:17, 2.15it/s]\n 10%|█ | 4/40 [00:01<00:16, 2.15it/s]\n 12%|█▎ | 5/40 [00:02<00:16, 2.15it/s]\n 15%|█▌ | 6/40 [00:02<00:15, 2.15it/s]\n 18%|█▊ | 7/40 [00:03<00:15, 2.16it/s]\n 20%|██ | 8/40 [00:03<00:14, 2.16it/s]\n 22%|██▎ | 9/40 [00:04<00:14, 2.16it/s]\n 25%|██▌ | 10/40 [00:04<00:13, 2.16it/s]\n 28%|██▊ | 11/40 [00:05<00:13, 2.16it/s]\n 30%|███ | 12/40 [00:05<00:12, 2.16it/s]\n 32%|███▎ | 13/40 [00:06<00:12, 2.16it/s]\n 35%|███▌ | 14/40 [00:06<00:12, 2.16it/s]\n 38%|███▊ | 15/40 [00:06<00:11, 2.15it/s]\n 40%|████ | 16/40 [00:07<00:11, 2.16it/s]\n 42%|████▎ | 17/40 [00:07<00:10, 2.15it/s]\n 45%|████▌ | 18/40 [00:08<00:10, 2.15it/s]\n 48%|████▊ | 19/40 [00:08<00:09, 2.15it/s]\n 50%|█████ | 20/40 [00:09<00:09, 2.15it/s]\n 52%|█████▎ | 21/40 [00:09<00:08, 2.15it/s]\n 55%|█████▌ | 22/40 [00:10<00:08, 2.15it/s]\n 57%|█████▊ | 23/40 [00:10<00:07, 2.15it/s]\n 60%|██████ | 24/40 [00:11<00:07, 2.15it/s]\n 62%|██████▎ | 25/40 [00:11<00:06, 2.15it/s]\n 65%|██████▌ | 26/40 [00:12<00:06, 2.15it/s]\n 68%|██████▊ | 27/40 [00:12<00:06, 2.15it/s]\n 70%|███████ | 28/40 [00:13<00:05, 2.15it/s]\n 72%|███████▎ | 29/40 [00:13<00:05, 2.15it/s]\n 75%|███████▌ | 30/40 [00:13<00:04, 2.15it/s]\n 78%|███████▊ | 31/40 [00:14<00:04, 2.15it/s]\n 80%|████████ | 32/40 [00:14<00:03, 2.15it/s]\n 82%|████████▎ | 33/40 [00:15<00:03, 2.15it/s]\n 85%|████████▌ | 34/40 [00:15<00:02, 2.15it/s]\n 88%|████████▊ | 35/40 [00:16<00:02, 2.15it/s]\n 90%|█████████ | 36/40 [00:16<00:01, 2.15it/s]\n 92%|█████████▎| 37/40 [00:17<00:01, 2.15it/s]\n 95%|█████████▌| 38/40 [00:17<00:00, 2.15it/s]\n 98%|█████████▊| 39/40 [00:18<00:00, 2.15it/s]\n100%|██████████| 40/40 [00:18<00:00, 2.15it/s]\n100%|██████████| 40/40 [00:18<00:00, 2.15it/s]", "metrics": { "predict_time": 23.353435, "total_time": 28.989346 }, "output": [ "https://replicate.delivery/pbxt/5yrt90zvS3KpNNozylrMPRpKUCFfwjH1zIK76AxqU698jz7IA/out-0.png" ], "started_at": "2023-11-12T12:06:59.366230Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pxtfmnlbbuavg5d7uhkdoxzaza", "cancel": "https://api.replicate.com/v1/predictions/pxtfmnlbbuavg5d7uhkdoxzaza/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 50420 Ensuring enough disk space... Free disk space: 1752990011392 Downloading weights: https://replicate.delivery/pbxt/JnKBppcawgaKCtkS6JrbIekKWYrfrNHvvQbSLSlqGTfi3KvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.227s (818 MB/s)\nExtracted 186 MB in 0.059s (3.2 GB/s)\n' Downloaded weights in 0.3952369689941406 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: In the style of <s0><s1>, a photo of modern kitchen, oven, white marble img2img mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:18, 2.12it/s] 5%|▌ | 2/40 [00:00<00:17, 2.14it/s] 8%|▊ | 3/40 [00:01<00:17, 2.15it/s] 10%|█ | 4/40 [00:01<00:16, 2.15it/s] 12%|█▎ | 5/40 [00:02<00:16, 2.15it/s] 15%|█▌ | 6/40 [00:02<00:15, 2.15it/s] 18%|█▊ | 7/40 [00:03<00:15, 2.16it/s] 20%|██ | 8/40 [00:03<00:14, 2.16it/s] 22%|██▎ | 9/40 [00:04<00:14, 2.16it/s] 25%|██▌ | 10/40 [00:04<00:13, 2.16it/s] 28%|██▊ | 11/40 [00:05<00:13, 2.16it/s] 30%|███ | 12/40 [00:05<00:12, 2.16it/s] 32%|███▎ | 13/40 [00:06<00:12, 2.16it/s] 35%|███▌ | 14/40 [00:06<00:12, 2.16it/s] 38%|███▊ | 15/40 [00:06<00:11, 2.15it/s] 40%|████ | 16/40 [00:07<00:11, 2.16it/s] 42%|████▎ | 17/40 [00:07<00:10, 2.15it/s] 45%|████▌ | 18/40 [00:08<00:10, 2.15it/s] 48%|████▊ | 19/40 [00:08<00:09, 2.15it/s] 50%|█████ | 20/40 [00:09<00:09, 2.15it/s] 52%|█████▎ | 21/40 [00:09<00:08, 2.15it/s] 55%|█████▌ | 22/40 [00:10<00:08, 2.15it/s] 57%|█████▊ | 23/40 [00:10<00:07, 2.15it/s] 60%|██████ | 24/40 [00:11<00:07, 2.15it/s] 62%|██████▎ | 25/40 [00:11<00:06, 2.15it/s] 65%|██████▌ | 26/40 [00:12<00:06, 2.15it/s] 68%|██████▊ | 27/40 [00:12<00:06, 2.15it/s] 70%|███████ | 28/40 [00:13<00:05, 2.15it/s] 72%|███████▎ | 29/40 [00:13<00:05, 2.15it/s] 75%|███████▌ | 30/40 [00:13<00:04, 2.15it/s] 78%|███████▊ | 31/40 [00:14<00:04, 2.15it/s] 80%|████████ | 32/40 [00:14<00:03, 2.15it/s] 82%|████████▎ | 33/40 [00:15<00:03, 2.15it/s] 85%|████████▌ | 34/40 [00:15<00:02, 2.15it/s] 88%|████████▊ | 35/40 [00:16<00:02, 2.15it/s] 90%|█████████ | 36/40 [00:16<00:01, 2.15it/s] 92%|█████████▎| 37/40 [00:17<00:01, 2.15it/s] 95%|█████████▌| 38/40 [00:17<00:00, 2.15it/s] 98%|█████████▊| 39/40 [00:18<00:00, 2.15it/s] 100%|██████████| 40/40 [00:18<00:00, 2.15it/s] 100%|██████████| 40/40 [00:18<00:00, 2.15it/s]
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelIDidpmasdbjnsjvaep3atzl6fo3eStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, painting of a modern kitchen, oven, vincent van gogh, museum, vase of sunflowers
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "In the style of TOK, painting of a modern kitchen, oven, vincent van gogh, museum, vase of sunflowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { width: 1024, height: 1024, prompt: "In the style of TOK, painting of a modern kitchen, oven, vincent van gogh, museum, vase of sunflowers", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "width": 1024, "height": 1024, "prompt": "In the style of TOK, painting of a modern kitchen, oven, vincent van gogh, museum, vase of sunflowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "width": 1024, "height": 1024, "prompt": "In the style of TOK, painting of a modern kitchen, oven, vincent van gogh, museum, vase of sunflowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T12:18:14.454180Z", "created_at": "2023-11-12T12:17:44.326870Z", "data_removed": false, "error": null, "id": "idpmasdbjnsjvaep3atzl6fo3e", "input": { "width": 1024, "height": 1024, "prompt": "In the style of TOK, painting of a modern kitchen, oven, vincent van gogh, museum, vase of sunflowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 7894\nskipping loading .. weights already loaded\nPrompt: In the style of <s0><s1>, painting of a modern kitchen, oven, vincent van gogh, museum, vase of sunflowers\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.67it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.67it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.66it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.65it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.65it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.65it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.65it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.65it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.65it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.65it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.65it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.64it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.64it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.64it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.64it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.64it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.64it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.64it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.63it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.63it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.63it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.63it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.63it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.63it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.63it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.63it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.63it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]", "metrics": { "predict_time": 15.907794, "total_time": 30.12731 }, "output": [ "https://replicate.delivery/pbxt/Yy2NwuwXq943LJ6EFegbwOx1DzpZEZg6fprsPXJ8mSMFSn3RA/out-0.png" ], "started_at": "2023-11-12T12:17:58.546386Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/idpmasdbjnsjvaep3atzl6fo3e", "cancel": "https://api.replicate.com/v1/predictions/idpmasdbjnsjvaep3atzl6fo3e/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 7894 skipping loading .. weights already loaded Prompt: In the style of <s0><s1>, painting of a modern kitchen, oven, vincent van gogh, museum, vase of sunflowers txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.67it/s] 4%|▍ | 2/50 [00:00<00:13, 3.67it/s] 6%|▌ | 3/50 [00:00<00:12, 3.66it/s] 8%|▊ | 4/50 [00:01<00:12, 3.65it/s] 10%|█ | 5/50 [00:01<00:12, 3.65it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.65it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.65it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.65it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.65it/s] 20%|██ | 10/50 [00:02<00:10, 3.65it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.65it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s] 30%|███ | 15/50 [00:04<00:09, 3.65it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.64it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.64it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.64it/s] 40%|████ | 20/50 [00:05<00:08, 3.64it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.64it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.64it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.64it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s] 50%|█████ | 25/50 [00:06<00:06, 3.64it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s] 60%|██████ | 30/50 [00:08<00:05, 3.64it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.63it/s] 70%|███████ | 35/50 [00:09<00:04, 3.63it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.63it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.63it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.63it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.63it/s] 80%|████████ | 40/50 [00:10<00:02, 3.63it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.63it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.63it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.64it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s] 100%|██████████| 50/50 [00:13<00:00, 3.64it/s] 100%|██████████| 50/50 [00:13<00:00, 3.64it/s]
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelID7wkj2qdbmlnm6mdbnmlhl2mesqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/JrdUSkBBfvbSKlUwOcRc07pvch9pBA4upsHu9x6W5NxiS7FF/97568a.jpg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { image: "https://replicate.delivery/pbxt/JrdUSkBBfvbSKlUwOcRc07pvch9pBA4upsHu9x6W5NxiS7FF/97568a.jpg", width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "image": "https://replicate.delivery/pbxt/JrdUSkBBfvbSKlUwOcRc07pvch9pBA4upsHu9x6W5NxiS7FF/97568a.jpg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "image": "https://replicate.delivery/pbxt/JrdUSkBBfvbSKlUwOcRc07pvch9pBA4upsHu9x6W5NxiS7FF/97568a.jpg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T12:44:07.453935Z", "created_at": "2023-11-12T12:43:56.527986Z", "data_removed": false, "error": null, "id": "7wkj2qdbmlnm6mdbnmlhl2mesq", "input": { "image": "https://replicate.delivery/pbxt/JrdUSkBBfvbSKlUwOcRc07pvch9pBA4upsHu9x6W5NxiS7FF/97568a.jpg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 12398\nEnsuring enough disk space...\nFree disk space: 1710430314496\nDownloading weights: https://replicate.delivery/pbxt/JnKBppcawgaKCtkS6JrbIekKWYrfrNHvvQbSLSlqGTfi3KvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.230s (809 MB/s)\\nExtracted 186 MB in 0.064s (2.9 GB/s)\\n'\nDownloaded weights in 0.3894639015197754 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of <s0><s1>, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:08, 4.76it/s]\n 5%|▌ | 2/40 [00:00<00:07, 4.97it/s]\n 8%|▊ | 3/40 [00:00<00:07, 5.05it/s]\n 10%|█ | 4/40 [00:00<00:07, 5.10it/s]\n 12%|█▎ | 5/40 [00:00<00:06, 5.12it/s]\n 15%|█▌ | 6/40 [00:01<00:06, 5.14it/s]\n 18%|█▊ | 7/40 [00:01<00:06, 5.14it/s]\n 20%|██ | 8/40 [00:01<00:06, 5.15it/s]\n 22%|██▎ | 9/40 [00:01<00:06, 5.15it/s]\n 25%|██▌ | 10/40 [00:01<00:05, 5.16it/s]\n 28%|██▊ | 11/40 [00:02<00:05, 5.16it/s]\n 30%|███ | 12/40 [00:02<00:05, 5.16it/s]\n 32%|███▎ | 13/40 [00:02<00:05, 5.16it/s]\n 35%|███▌ | 14/40 [00:02<00:05, 5.15it/s]\n 38%|███▊ | 15/40 [00:02<00:04, 5.15it/s]\n 40%|████ | 16/40 [00:03<00:04, 5.16it/s]\n 42%|████▎ | 17/40 [00:03<00:04, 5.16it/s]\n 45%|████▌ | 18/40 [00:03<00:04, 5.16it/s]\n 48%|████▊ | 19/40 [00:03<00:04, 5.16it/s]\n 50%|█████ | 20/40 [00:03<00:03, 5.16it/s]\n 52%|█████▎ | 21/40 [00:04<00:03, 5.15it/s]\n 55%|█████▌ | 22/40 [00:04<00:03, 5.15it/s]\n 57%|█████▊ | 23/40 [00:04<00:03, 5.15it/s]\n 60%|██████ | 24/40 [00:04<00:03, 5.15it/s]\n 62%|██████▎ | 25/40 [00:04<00:02, 5.15it/s]\n 65%|██████▌ | 26/40 [00:05<00:02, 5.14it/s]\n 68%|██████▊ | 27/40 [00:05<00:02, 5.14it/s]\n 70%|███████ | 28/40 [00:05<00:02, 5.14it/s]\n 72%|███████▎ | 29/40 [00:05<00:02, 5.14it/s]\n 75%|███████▌ | 30/40 [00:05<00:01, 5.14it/s]\n 78%|███████▊ | 31/40 [00:06<00:01, 5.14it/s]\n 80%|████████ | 32/40 [00:06<00:01, 5.13it/s]\n 82%|████████▎ | 33/40 [00:06<00:01, 5.14it/s]\n 85%|████████▌ | 34/40 [00:06<00:01, 5.13it/s]\n 88%|████████▊ | 35/40 [00:06<00:00, 5.13it/s]\n 90%|█████████ | 36/40 [00:07<00:00, 5.13it/s]\n 92%|█████████▎| 37/40 [00:07<00:00, 5.13it/s]\n 95%|█████████▌| 38/40 [00:07<00:00, 5.13it/s]\n 98%|█████████▊| 39/40 [00:07<00:00, 5.12it/s]\n100%|██████████| 40/40 [00:07<00:00, 5.12it/s]\n100%|██████████| 40/40 [00:07<00:00, 5.14it/s]", "metrics": { "predict_time": 10.99569, "total_time": 10.925949 }, "output": [ "https://replicate.delivery/pbxt/le5BVOMAd13NQiYSujhPzWq4PJfrjJWBxp5ZVfYUEx5tUPvjA/out-0.png" ], "started_at": "2023-11-12T12:43:56.458245Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7wkj2qdbmlnm6mdbnmlhl2mesq", "cancel": "https://api.replicate.com/v1/predictions/7wkj2qdbmlnm6mdbnmlhl2mesq/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 12398 Ensuring enough disk space... Free disk space: 1710430314496 Downloading weights: https://replicate.delivery/pbxt/JnKBppcawgaKCtkS6JrbIekKWYrfrNHvvQbSLSlqGTfi3KvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.230s (809 MB/s)\nExtracted 186 MB in 0.064s (2.9 GB/s)\n' Downloaded weights in 0.3894639015197754 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: In the style of <s0><s1>, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits img2img mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:08, 4.76it/s] 5%|▌ | 2/40 [00:00<00:07, 4.97it/s] 8%|▊ | 3/40 [00:00<00:07, 5.05it/s] 10%|█ | 4/40 [00:00<00:07, 5.10it/s] 12%|█▎ | 5/40 [00:00<00:06, 5.12it/s] 15%|█▌ | 6/40 [00:01<00:06, 5.14it/s] 18%|█▊ | 7/40 [00:01<00:06, 5.14it/s] 20%|██ | 8/40 [00:01<00:06, 5.15it/s] 22%|██▎ | 9/40 [00:01<00:06, 5.15it/s] 25%|██▌ | 10/40 [00:01<00:05, 5.16it/s] 28%|██▊ | 11/40 [00:02<00:05, 5.16it/s] 30%|███ | 12/40 [00:02<00:05, 5.16it/s] 32%|███▎ | 13/40 [00:02<00:05, 5.16it/s] 35%|███▌ | 14/40 [00:02<00:05, 5.15it/s] 38%|███▊ | 15/40 [00:02<00:04, 5.15it/s] 40%|████ | 16/40 [00:03<00:04, 5.16it/s] 42%|████▎ | 17/40 [00:03<00:04, 5.16it/s] 45%|████▌ | 18/40 [00:03<00:04, 5.16it/s] 48%|████▊ | 19/40 [00:03<00:04, 5.16it/s] 50%|█████ | 20/40 [00:03<00:03, 5.16it/s] 52%|█████▎ | 21/40 [00:04<00:03, 5.15it/s] 55%|█████▌ | 22/40 [00:04<00:03, 5.15it/s] 57%|█████▊ | 23/40 [00:04<00:03, 5.15it/s] 60%|██████ | 24/40 [00:04<00:03, 5.15it/s] 62%|██████▎ | 25/40 [00:04<00:02, 5.15it/s] 65%|██████▌ | 26/40 [00:05<00:02, 5.14it/s] 68%|██████▊ | 27/40 [00:05<00:02, 5.14it/s] 70%|███████ | 28/40 [00:05<00:02, 5.14it/s] 72%|███████▎ | 29/40 [00:05<00:02, 5.14it/s] 75%|███████▌ | 30/40 [00:05<00:01, 5.14it/s] 78%|███████▊ | 31/40 [00:06<00:01, 5.14it/s] 80%|████████ | 32/40 [00:06<00:01, 5.13it/s] 82%|████████▎ | 33/40 [00:06<00:01, 5.14it/s] 85%|████████▌ | 34/40 [00:06<00:01, 5.13it/s] 88%|████████▊ | 35/40 [00:06<00:00, 5.13it/s] 90%|█████████ | 36/40 [00:07<00:00, 5.13it/s] 92%|█████████▎| 37/40 [00:07<00:00, 5.13it/s] 95%|█████████▌| 38/40 [00:07<00:00, 5.13it/s] 98%|█████████▊| 39/40 [00:07<00:00, 5.12it/s] 100%|██████████| 40/40 [00:07<00:00, 5.12it/s] 100%|██████████| 40/40 [00:07<00:00, 5.14it/s]
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelID3yzbuc3bdgzqsdo4udeog43i3qStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/JrdV2yR7IoOv54mhmis6W7i0YPZ9cWqBk6Es3zjMMy6k6wc1/97568a.jpg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { image: "https://replicate.delivery/pbxt/JrdV2yR7IoOv54mhmis6W7i0YPZ9cWqBk6Es3zjMMy6k6wc1/97568a.jpg", width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "image": "https://replicate.delivery/pbxt/JrdV2yR7IoOv54mhmis6W7i0YPZ9cWqBk6Es3zjMMy6k6wc1/97568a.jpg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "image": "https://replicate.delivery/pbxt/JrdV2yR7IoOv54mhmis6W7i0YPZ9cWqBk6Es3zjMMy6k6wc1/97568a.jpg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T12:45:01.586645Z", "created_at": "2023-11-12T12:44:33.174417Z", "data_removed": false, "error": null, "id": "3yzbuc3bdgzqsdo4udeog43i3q", "input": { "image": "https://replicate.delivery/pbxt/JrdV2yR7IoOv54mhmis6W7i0YPZ9cWqBk6Es3zjMMy6k6wc1/97568a.jpg", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 7412\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of <s0><s1>, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:08, 4.78it/s]\n 5%|▌ | 2/40 [00:00<00:07, 5.00it/s]\n 8%|▊ | 3/40 [00:00<00:07, 5.07it/s]\n 10%|█ | 4/40 [00:00<00:07, 5.11it/s]\n 12%|█▎ | 5/40 [00:00<00:06, 5.13it/s]\n 15%|█▌ | 6/40 [00:01<00:06, 5.14it/s]\n 18%|█▊ | 7/40 [00:01<00:06, 5.15it/s]\n 20%|██ | 8/40 [00:01<00:06, 5.16it/s]\n 22%|██▎ | 9/40 [00:01<00:06, 5.16it/s]\n 25%|██▌ | 10/40 [00:01<00:05, 5.16it/s]\n 28%|██▊ | 11/40 [00:02<00:05, 5.16it/s]\n 30%|███ | 12/40 [00:02<00:05, 5.16it/s]\n 32%|███▎ | 13/40 [00:02<00:05, 5.17it/s]\n 35%|███▌ | 14/40 [00:02<00:05, 5.17it/s]\n 38%|███▊ | 15/40 [00:02<00:04, 5.17it/s]\n 40%|████ | 16/40 [00:03<00:04, 5.17it/s]\n 42%|████▎ | 17/40 [00:03<00:04, 5.17it/s]\n 45%|████▌ | 18/40 [00:03<00:04, 5.17it/s]\n 48%|████▊ | 19/40 [00:03<00:04, 5.17it/s]\n 50%|█████ | 20/40 [00:03<00:03, 5.17it/s]\n 52%|█████▎ | 21/40 [00:04<00:03, 5.17it/s]\n 55%|█████▌ | 22/40 [00:04<00:03, 5.17it/s]\n 57%|█████▊ | 23/40 [00:04<00:03, 5.17it/s]\n 60%|██████ | 24/40 [00:04<00:03, 5.17it/s]\n 62%|██████▎ | 25/40 [00:04<00:02, 5.17it/s]\n 65%|██████▌ | 26/40 [00:05<00:02, 5.17it/s]\n 68%|██████▊ | 27/40 [00:05<00:02, 5.17it/s]\n 70%|███████ | 28/40 [00:05<00:02, 5.17it/s]\n 72%|███████▎ | 29/40 [00:05<00:02, 5.17it/s]\n 75%|███████▌ | 30/40 [00:05<00:01, 5.17it/s]\n 78%|███████▊ | 31/40 [00:06<00:01, 5.17it/s]\n 80%|████████ | 32/40 [00:06<00:01, 5.16it/s]\n 82%|████████▎ | 33/40 [00:06<00:01, 5.16it/s]\n 85%|████████▌ | 34/40 [00:06<00:01, 5.16it/s]\n 88%|████████▊ | 35/40 [00:06<00:00, 5.15it/s]\n 90%|█████████ | 36/40 [00:06<00:00, 5.15it/s]\n 92%|█████████▎| 37/40 [00:07<00:00, 5.15it/s]\n 95%|█████████▌| 38/40 [00:07<00:00, 5.14it/s]\n 98%|█████████▊| 39/40 [00:07<00:00, 5.14it/s]\n100%|██████████| 40/40 [00:07<00:00, 5.14it/s]\n100%|██████████| 40/40 [00:07<00:00, 5.15it/s]", "metrics": { "predict_time": 10.623606, "total_time": 28.412228 }, "output": [ "https://replicate.delivery/pbxt/mH59DiejElzOQKqtY79Rb1bfb5vOfzXfRUXXtAf0GpUgZ98OC/out-0.png" ], "started_at": "2023-11-12T12:44:50.963039Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3yzbuc3bdgzqsdo4udeog43i3q", "cancel": "https://api.replicate.com/v1/predictions/3yzbuc3bdgzqsdo4udeog43i3q/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 7412 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: In the style of <s0><s1>, a photo of a modern kitchen, white marble, large island, wooden floors, oven, bowl of fruits img2img mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:08, 4.78it/s] 5%|▌ | 2/40 [00:00<00:07, 5.00it/s] 8%|▊ | 3/40 [00:00<00:07, 5.07it/s] 10%|█ | 4/40 [00:00<00:07, 5.11it/s] 12%|█▎ | 5/40 [00:00<00:06, 5.13it/s] 15%|█▌ | 6/40 [00:01<00:06, 5.14it/s] 18%|█▊ | 7/40 [00:01<00:06, 5.15it/s] 20%|██ | 8/40 [00:01<00:06, 5.16it/s] 22%|██▎ | 9/40 [00:01<00:06, 5.16it/s] 25%|██▌ | 10/40 [00:01<00:05, 5.16it/s] 28%|██▊ | 11/40 [00:02<00:05, 5.16it/s] 30%|███ | 12/40 [00:02<00:05, 5.16it/s] 32%|███▎ | 13/40 [00:02<00:05, 5.17it/s] 35%|███▌ | 14/40 [00:02<00:05, 5.17it/s] 38%|███▊ | 15/40 [00:02<00:04, 5.17it/s] 40%|████ | 16/40 [00:03<00:04, 5.17it/s] 42%|████▎ | 17/40 [00:03<00:04, 5.17it/s] 45%|████▌ | 18/40 [00:03<00:04, 5.17it/s] 48%|████▊ | 19/40 [00:03<00:04, 5.17it/s] 50%|█████ | 20/40 [00:03<00:03, 5.17it/s] 52%|█████▎ | 21/40 [00:04<00:03, 5.17it/s] 55%|█████▌ | 22/40 [00:04<00:03, 5.17it/s] 57%|█████▊ | 23/40 [00:04<00:03, 5.17it/s] 60%|██████ | 24/40 [00:04<00:03, 5.17it/s] 62%|██████▎ | 25/40 [00:04<00:02, 5.17it/s] 65%|██████▌ | 26/40 [00:05<00:02, 5.17it/s] 68%|██████▊ | 27/40 [00:05<00:02, 5.17it/s] 70%|███████ | 28/40 [00:05<00:02, 5.17it/s] 72%|███████▎ | 29/40 [00:05<00:02, 5.17it/s] 75%|███████▌ | 30/40 [00:05<00:01, 5.17it/s] 78%|███████▊ | 31/40 [00:06<00:01, 5.17it/s] 80%|████████ | 32/40 [00:06<00:01, 5.16it/s] 82%|████████▎ | 33/40 [00:06<00:01, 5.16it/s] 85%|████████▌ | 34/40 [00:06<00:01, 5.16it/s] 88%|████████▊ | 35/40 [00:06<00:00, 5.15it/s] 90%|█████████ | 36/40 [00:06<00:00, 5.15it/s] 92%|█████████▎| 37/40 [00:07<00:00, 5.15it/s] 95%|█████████▌| 38/40 [00:07<00:00, 5.14it/s] 98%|█████████▊| 39/40 [00:07<00:00, 5.14it/s] 100%|██████████| 40/40 [00:07<00:00, 5.14it/s] 100%|██████████| 40/40 [00:07<00:00, 5.15it/s]
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelIDnu66kn3bxpezq7igfs7gc64uqiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a modern kitchen, white marble, wooden floors, oven, bowl of fruits
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/JrdXFc1cNVidA2a2iNHo5irzz8NrkMc2avXRAiHLQpAol2Zm/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { image: "https://replicate.delivery/pbxt/JrdXFc1cNVidA2a2iNHo5irzz8NrkMc2avXRAiHLQpAol2Zm/Screenshot%202023-11-12%20at%2013.46.28.png", width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a modern kitchen, white marble, wooden floors, oven, bowl of fruits", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "image": "https://replicate.delivery/pbxt/JrdXFc1cNVidA2a2iNHo5irzz8NrkMc2avXRAiHLQpAol2Zm/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "image": "https://replicate.delivery/pbxt/JrdXFc1cNVidA2a2iNHo5irzz8NrkMc2avXRAiHLQpAol2Zm/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T12:47:32.928234Z", "created_at": "2023-11-12T12:47:00.878538Z", "data_removed": false, "error": null, "id": "nu66kn3bxpezq7igfs7gc64uqi", "input": { "image": "https://replicate.delivery/pbxt/JrdXFc1cNVidA2a2iNHo5irzz8NrkMc2avXRAiHLQpAol2Zm/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wooden floors, oven, bowl of fruits", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 20161\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of <s0><s1>, a photo of a modern kitchen, white marble, wooden floors, oven, bowl of fruits\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:17, 2.21it/s]\n 5%|▌ | 2/40 [00:00<00:17, 2.23it/s]\n 8%|▊ | 3/40 [00:01<00:16, 2.23it/s]\n 10%|█ | 4/40 [00:01<00:16, 2.23it/s]\n 12%|█▎ | 5/40 [00:02<00:15, 2.23it/s]\n 15%|█▌ | 6/40 [00:02<00:15, 2.24it/s]\n 18%|█▊ | 7/40 [00:03<00:14, 2.23it/s]\n 20%|██ | 8/40 [00:03<00:14, 2.23it/s]\n 22%|██▎ | 9/40 [00:04<00:13, 2.23it/s]\n 25%|██▌ | 10/40 [00:04<00:13, 2.23it/s]\n 28%|██▊ | 11/40 [00:04<00:12, 2.23it/s]\n 30%|███ | 12/40 [00:05<00:12, 2.23it/s]\n 32%|███▎ | 13/40 [00:05<00:12, 2.23it/s]\n 35%|███▌ | 14/40 [00:06<00:11, 2.23it/s]\n 38%|███▊ | 15/40 [00:06<00:11, 2.23it/s]\n 40%|████ | 16/40 [00:07<00:10, 2.23it/s]\n 42%|████▎ | 17/40 [00:07<00:10, 2.23it/s]\n 45%|████▌ | 18/40 [00:08<00:09, 2.23it/s]\n 48%|████▊ | 19/40 [00:08<00:09, 2.23it/s]\n 50%|█████ | 20/40 [00:08<00:08, 2.23it/s]\n 52%|█████▎ | 21/40 [00:09<00:08, 2.22it/s]\n 55%|█████▌ | 22/40 [00:09<00:08, 2.22it/s]\n 57%|█████▊ | 23/40 [00:10<00:07, 2.22it/s]\n 60%|██████ | 24/40 [00:10<00:07, 2.22it/s]\n 62%|██████▎ | 25/40 [00:11<00:06, 2.22it/s]\n 65%|██████▌ | 26/40 [00:11<00:06, 2.22it/s]\n 68%|██████▊ | 27/40 [00:12<00:05, 2.22it/s]\n 70%|███████ | 28/40 [00:12<00:05, 2.22it/s]\n 72%|███████▎ | 29/40 [00:13<00:04, 2.22it/s]\n 75%|███████▌ | 30/40 [00:13<00:04, 2.22it/s]\n 78%|███████▊ | 31/40 [00:13<00:04, 2.22it/s]\n 80%|████████ | 32/40 [00:14<00:03, 2.20it/s]\n 82%|████████▎ | 33/40 [00:14<00:03, 2.20it/s]\n 85%|████████▌ | 34/40 [00:15<00:02, 2.21it/s]\n 88%|████████▊ | 35/40 [00:15<00:02, 2.21it/s]\n 90%|█████████ | 36/40 [00:16<00:01, 2.21it/s]\n 92%|█████████▎| 37/40 [00:16<00:01, 2.21it/s]\n 95%|█████████▌| 38/40 [00:17<00:00, 2.21it/s]\n 98%|█████████▊| 39/40 [00:17<00:00, 2.21it/s]\n100%|██████████| 40/40 [00:17<00:00, 2.21it/s]\n100%|██████████| 40/40 [00:18<00:00, 2.22it/s]", "metrics": { "predict_time": 22.395197, "total_time": 32.049696 }, "output": [ "https://replicate.delivery/pbxt/0O08YIbdd6qfHiDf9hifIKvlE7dfqUhpTkjI2f3UYx9ks98OC/out-0.png" ], "started_at": "2023-11-12T12:47:10.533037Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nu66kn3bxpezq7igfs7gc64uqi", "cancel": "https://api.replicate.com/v1/predictions/nu66kn3bxpezq7igfs7gc64uqi/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 20161 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: In the style of <s0><s1>, a photo of a modern kitchen, white marble, wooden floors, oven, bowl of fruits img2img mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:17, 2.21it/s] 5%|▌ | 2/40 [00:00<00:17, 2.23it/s] 8%|▊ | 3/40 [00:01<00:16, 2.23it/s] 10%|█ | 4/40 [00:01<00:16, 2.23it/s] 12%|█▎ | 5/40 [00:02<00:15, 2.23it/s] 15%|█▌ | 6/40 [00:02<00:15, 2.24it/s] 18%|█▊ | 7/40 [00:03<00:14, 2.23it/s] 20%|██ | 8/40 [00:03<00:14, 2.23it/s] 22%|██▎ | 9/40 [00:04<00:13, 2.23it/s] 25%|██▌ | 10/40 [00:04<00:13, 2.23it/s] 28%|██▊ | 11/40 [00:04<00:12, 2.23it/s] 30%|███ | 12/40 [00:05<00:12, 2.23it/s] 32%|███▎ | 13/40 [00:05<00:12, 2.23it/s] 35%|███▌ | 14/40 [00:06<00:11, 2.23it/s] 38%|███▊ | 15/40 [00:06<00:11, 2.23it/s] 40%|████ | 16/40 [00:07<00:10, 2.23it/s] 42%|████▎ | 17/40 [00:07<00:10, 2.23it/s] 45%|████▌ | 18/40 [00:08<00:09, 2.23it/s] 48%|████▊ | 19/40 [00:08<00:09, 2.23it/s] 50%|█████ | 20/40 [00:08<00:08, 2.23it/s] 52%|█████▎ | 21/40 [00:09<00:08, 2.22it/s] 55%|█████▌ | 22/40 [00:09<00:08, 2.22it/s] 57%|█████▊ | 23/40 [00:10<00:07, 2.22it/s] 60%|██████ | 24/40 [00:10<00:07, 2.22it/s] 62%|██████▎ | 25/40 [00:11<00:06, 2.22it/s] 65%|██████▌ | 26/40 [00:11<00:06, 2.22it/s] 68%|██████▊ | 27/40 [00:12<00:05, 2.22it/s] 70%|███████ | 28/40 [00:12<00:05, 2.22it/s] 72%|███████▎ | 29/40 [00:13<00:04, 2.22it/s] 75%|███████▌ | 30/40 [00:13<00:04, 2.22it/s] 78%|███████▊ | 31/40 [00:13<00:04, 2.22it/s] 80%|████████ | 32/40 [00:14<00:03, 2.20it/s] 82%|████████▎ | 33/40 [00:14<00:03, 2.20it/s] 85%|████████▌ | 34/40 [00:15<00:02, 2.21it/s] 88%|████████▊ | 35/40 [00:15<00:02, 2.21it/s] 90%|█████████ | 36/40 [00:16<00:01, 2.21it/s] 92%|█████████▎| 37/40 [00:16<00:01, 2.21it/s] 95%|█████████▌| 38/40 [00:17<00:00, 2.21it/s] 98%|█████████▊| 39/40 [00:17<00:00, 2.21it/s] 100%|██████████| 40/40 [00:17<00:00, 2.21it/s] 100%|██████████| 40/40 [00:18<00:00, 2.22it/s]
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelIDibdjfclb5islom4652o4lzih2iStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, flowers
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/JrdZjkIEQV2NdL6pgZt96QcqWc17CQBMh4597dgaT4KBZocy/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, flowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { image: "https://replicate.delivery/pbxt/JrdZjkIEQV2NdL6pgZt96QcqWc17CQBMh4597dgaT4KBZocy/Screenshot%202023-11-12%20at%2013.46.28.png", width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, flowers", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "image": "https://replicate.delivery/pbxt/JrdZjkIEQV2NdL6pgZt96QcqWc17CQBMh4597dgaT4KBZocy/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, flowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "image": "https://replicate.delivery/pbxt/JrdZjkIEQV2NdL6pgZt96QcqWc17CQBMh4597dgaT4KBZocy/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, flowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T12:50:03.236819Z", "created_at": "2023-11-12T12:49:31.397982Z", "data_removed": false, "error": null, "id": "ibdjfclb5islom4652o4lzih2i", "input": { "image": "https://replicate.delivery/pbxt/JrdZjkIEQV2NdL6pgZt96QcqWc17CQBMh4597dgaT4KBZocy/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, flowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 37800\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of <s0><s1>, a photo of a modern kitchen, white marble, wood large island with wine cooler, flowers\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:17, 2.21it/s]\n 5%|▌ | 2/40 [00:00<00:16, 2.24it/s]\n 8%|▊ | 3/40 [00:01<00:16, 2.24it/s]\n 10%|█ | 4/40 [00:01<00:16, 2.25it/s]\n 12%|█▎ | 5/40 [00:02<00:15, 2.25it/s]\n 15%|█▌ | 6/40 [00:02<00:15, 2.25it/s]\n 18%|█▊ | 7/40 [00:03<00:14, 2.25it/s]\n 20%|██ | 8/40 [00:03<00:14, 2.25it/s]\n 22%|██▎ | 9/40 [00:04<00:13, 2.25it/s]\n 25%|██▌ | 10/40 [00:04<00:13, 2.25it/s]\n 28%|██▊ | 11/40 [00:04<00:12, 2.25it/s]\n 30%|███ | 12/40 [00:05<00:12, 2.25it/s]\n 32%|███▎ | 13/40 [00:05<00:12, 2.25it/s]\n 35%|███▌ | 14/40 [00:06<00:11, 2.25it/s]\n 38%|███▊ | 15/40 [00:06<00:11, 2.25it/s]\n 40%|████ | 16/40 [00:07<00:10, 2.25it/s]\n 42%|████▎ | 17/40 [00:07<00:10, 2.25it/s]\n 45%|████▌ | 18/40 [00:08<00:09, 2.25it/s]\n 48%|████▊ | 19/40 [00:08<00:09, 2.25it/s]\n 50%|█████ | 20/40 [00:08<00:08, 2.25it/s]\n 52%|█████▎ | 21/40 [00:09<00:08, 2.25it/s]\n 55%|█████▌ | 22/40 [00:09<00:08, 2.24it/s]\n 57%|█████▊ | 23/40 [00:10<00:07, 2.24it/s]\n 60%|██████ | 24/40 [00:10<00:07, 2.24it/s]\n 62%|██████▎ | 25/40 [00:11<00:06, 2.24it/s]\n 65%|██████▌ | 26/40 [00:11<00:06, 2.24it/s]\n 68%|██████▊ | 27/40 [00:12<00:05, 2.24it/s]\n 70%|███████ | 28/40 [00:12<00:05, 2.24it/s]\n 72%|███████▎ | 29/40 [00:12<00:04, 2.24it/s]\n 75%|███████▌ | 30/40 [00:13<00:04, 2.24it/s]\n 78%|███████▊ | 31/40 [00:13<00:04, 2.24it/s]\n 80%|████████ | 32/40 [00:14<00:03, 2.23it/s]\n 82%|████████▎ | 33/40 [00:14<00:03, 2.23it/s]\n 85%|████████▌ | 34/40 [00:15<00:02, 2.23it/s]\n 88%|████████▊ | 35/40 [00:15<00:02, 2.23it/s]\n 90%|█████████ | 36/40 [00:16<00:01, 2.23it/s]\n 92%|█████████▎| 37/40 [00:16<00:01, 2.23it/s]\n 95%|█████████▌| 38/40 [00:16<00:00, 2.24it/s]\n 98%|█████████▊| 39/40 [00:17<00:00, 2.24it/s]\n100%|██████████| 40/40 [00:17<00:00, 2.24it/s]\n100%|██████████| 40/40 [00:17<00:00, 2.24it/s]", "metrics": { "predict_time": 22.220205, "total_time": 31.838837 }, "output": [ "https://replicate.delivery/pbxt/3PNPpxdtL2a3F1fJlr6VjKLyV0lO4SdOYYExw7d0LNY93z7IA/out-0.png" ], "started_at": "2023-11-12T12:49:41.016614Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ibdjfclb5islom4652o4lzih2i", "cancel": "https://api.replicate.com/v1/predictions/ibdjfclb5islom4652o4lzih2i/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 37800 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: In the style of <s0><s1>, a photo of a modern kitchen, white marble, wood large island with wine cooler, flowers img2img mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:17, 2.21it/s] 5%|▌ | 2/40 [00:00<00:16, 2.24it/s] 8%|▊ | 3/40 [00:01<00:16, 2.24it/s] 10%|█ | 4/40 [00:01<00:16, 2.25it/s] 12%|█▎ | 5/40 [00:02<00:15, 2.25it/s] 15%|█▌ | 6/40 [00:02<00:15, 2.25it/s] 18%|█▊ | 7/40 [00:03<00:14, 2.25it/s] 20%|██ | 8/40 [00:03<00:14, 2.25it/s] 22%|██▎ | 9/40 [00:04<00:13, 2.25it/s] 25%|██▌ | 10/40 [00:04<00:13, 2.25it/s] 28%|██▊ | 11/40 [00:04<00:12, 2.25it/s] 30%|███ | 12/40 [00:05<00:12, 2.25it/s] 32%|███▎ | 13/40 [00:05<00:12, 2.25it/s] 35%|███▌ | 14/40 [00:06<00:11, 2.25it/s] 38%|███▊ | 15/40 [00:06<00:11, 2.25it/s] 40%|████ | 16/40 [00:07<00:10, 2.25it/s] 42%|████▎ | 17/40 [00:07<00:10, 2.25it/s] 45%|████▌ | 18/40 [00:08<00:09, 2.25it/s] 48%|████▊ | 19/40 [00:08<00:09, 2.25it/s] 50%|█████ | 20/40 [00:08<00:08, 2.25it/s] 52%|█████▎ | 21/40 [00:09<00:08, 2.25it/s] 55%|█████▌ | 22/40 [00:09<00:08, 2.24it/s] 57%|█████▊ | 23/40 [00:10<00:07, 2.24it/s] 60%|██████ | 24/40 [00:10<00:07, 2.24it/s] 62%|██████▎ | 25/40 [00:11<00:06, 2.24it/s] 65%|██████▌ | 26/40 [00:11<00:06, 2.24it/s] 68%|██████▊ | 27/40 [00:12<00:05, 2.24it/s] 70%|███████ | 28/40 [00:12<00:05, 2.24it/s] 72%|███████▎ | 29/40 [00:12<00:04, 2.24it/s] 75%|███████▌ | 30/40 [00:13<00:04, 2.24it/s] 78%|███████▊ | 31/40 [00:13<00:04, 2.24it/s] 80%|████████ | 32/40 [00:14<00:03, 2.23it/s] 82%|████████▎ | 33/40 [00:14<00:03, 2.23it/s] 85%|████████▌ | 34/40 [00:15<00:02, 2.23it/s] 88%|████████▊ | 35/40 [00:15<00:02, 2.23it/s] 90%|█████████ | 36/40 [00:16<00:01, 2.23it/s] 92%|█████████▎| 37/40 [00:16<00:01, 2.23it/s] 95%|█████████▌| 38/40 [00:16<00:00, 2.24it/s] 98%|█████████▊| 39/40 [00:17<00:00, 2.24it/s] 100%|██████████| 40/40 [00:17<00:00, 2.24it/s] 100%|██████████| 40/40 [00:17<00:00, 2.24it/s]
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelIDjqwnr7dbkcuzhhcpw6ih2726vmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, tulips
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/JrdcA5OJnAYsVPkfhL3eqFul26KuhDHxS9wRQb4gf8Yg0N80/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, tulips", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { image: "https://replicate.delivery/pbxt/JrdcA5OJnAYsVPkfhL3eqFul26KuhDHxS9wRQb4gf8Yg0N80/Screenshot%202023-11-12%20at%2013.46.28.png", width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, tulips", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 4, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "image": "https://replicate.delivery/pbxt/JrdcA5OJnAYsVPkfhL3eqFul26KuhDHxS9wRQb4gf8Yg0N80/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, tulips", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "image": "https://replicate.delivery/pbxt/JrdcA5OJnAYsVPkfhL3eqFul26KuhDHxS9wRQb4gf8Yg0N80/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, tulips", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T12:53:23.877041Z", "created_at": "2023-11-12T12:52:04.426291Z", "data_removed": false, "error": null, "id": "jqwnr7dbkcuzhhcpw6ih2726vm", "input": { "image": "https://replicate.delivery/pbxt/JrdcA5OJnAYsVPkfhL3eqFul26KuhDHxS9wRQb4gf8Yg0N80/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, tulips", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 46442\nskipping loading .. weights already loaded\nPrompt: In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, tulips\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:01<01:06, 1.71s/it]\n 5%|▌ | 2/40 [00:03<01:04, 1.70s/it]\n 8%|▊ | 3/40 [00:05<01:03, 1.71s/it]\n 10%|█ | 4/40 [00:06<01:01, 1.71s/it]\n 12%|█▎ | 5/40 [00:08<00:59, 1.71s/it]\n 15%|█▌ | 6/40 [00:10<00:58, 1.71s/it]\n 18%|█▊ | 7/40 [00:11<00:56, 1.71s/it]\n 20%|██ | 8/40 [00:13<00:54, 1.71s/it]\n 22%|██▎ | 9/40 [00:15<00:52, 1.71s/it]\n 25%|██▌ | 10/40 [00:17<00:51, 1.71s/it]\n 28%|██▊ | 11/40 [00:18<00:49, 1.71s/it]\n 30%|███ | 12/40 [00:20<00:47, 1.71s/it]\n 32%|███▎ | 13/40 [00:22<00:46, 1.71s/it]\n 35%|███▌ | 14/40 [00:23<00:44, 1.71s/it]\n 38%|███▊ | 15/40 [00:25<00:42, 1.71s/it]\n 40%|████ | 16/40 [00:27<00:41, 1.71s/it]\n 42%|████▎ | 17/40 [00:29<00:39, 1.71s/it]\n 45%|████▌ | 18/40 [00:30<00:37, 1.71s/it]\n 48%|████▊ | 19/40 [00:32<00:36, 1.72s/it]\n 50%|█████ | 20/40 [00:34<00:34, 1.72s/it]\n 52%|█████▎ | 21/40 [00:35<00:32, 1.72s/it]\n 55%|█████▌ | 22/40 [00:37<00:30, 1.72s/it]\n 57%|█████▊ | 23/40 [00:39<00:29, 1.72s/it]\n 60%|██████ | 24/40 [00:41<00:27, 1.72s/it]\n 62%|██████▎ | 25/40 [00:42<00:25, 1.72s/it]\n 65%|██████▌ | 26/40 [00:44<00:24, 1.72s/it]\n 68%|██████▊ | 27/40 [00:46<00:22, 1.72s/it]\n 70%|███████ | 28/40 [00:47<00:20, 1.72s/it]\n 72%|███████▎ | 29/40 [00:49<00:18, 1.72s/it]\n 75%|███████▌ | 30/40 [00:51<00:17, 1.72s/it]\n 78%|███████▊ | 31/40 [00:53<00:15, 1.72s/it]\n 80%|████████ | 32/40 [00:54<00:13, 1.72s/it]\n 82%|████████▎ | 33/40 [00:56<00:12, 1.72s/it]\n 85%|████████▌ | 34/40 [00:58<00:10, 1.72s/it]\n 88%|████████▊ | 35/40 [01:00<00:08, 1.72s/it]\n 90%|█████████ | 36/40 [01:01<00:06, 1.72s/it]\n 92%|█████████▎| 37/40 [01:03<00:05, 1.72s/it]\n 95%|█████████▌| 38/40 [01:05<00:03, 1.72s/it]\n 98%|█████████▊| 39/40 [01:06<00:01, 1.72s/it]\n100%|██████████| 40/40 [01:08<00:00, 1.72s/it]\n100%|██████████| 40/40 [01:08<00:00, 1.72s/it]", "metrics": { "predict_time": 79.4818, "total_time": 79.45075 }, "output": [ "https://replicate.delivery/pbxt/WPhEiffhdWnm1EJz541uEaKDCcCIfszeQG11AmSKF0KHMf8OC/out-0.png", "https://replicate.delivery/pbxt/H5ibOfeTlhhaj0VZ2Qgh7dXYrSGeBIwFfVNL69tem3gRYe5dE/out-1.png", "https://replicate.delivery/pbxt/tck6zQGAtOaYNddkCb5UhxgfIxeuzFKNrqNozfT4c7zEmPvjA/out-2.png", "https://replicate.delivery/pbxt/8RBmFNRLPZ4JM57tVYtXIo37LF4wjcDjaLZQRFQ00q2w85dE/out-3.png" ], "started_at": "2023-11-12T12:52:04.395241Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jqwnr7dbkcuzhhcpw6ih2726vm", "cancel": "https://api.replicate.com/v1/predictions/jqwnr7dbkcuzhhcpw6ih2726vm/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 46442 skipping loading .. weights already loaded Prompt: In the style of TOK, a photo of a modern kitchen, white marble, wood large island with wine cooler, tulips img2img mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:01<01:06, 1.71s/it] 5%|▌ | 2/40 [00:03<01:04, 1.70s/it] 8%|▊ | 3/40 [00:05<01:03, 1.71s/it] 10%|█ | 4/40 [00:06<01:01, 1.71s/it] 12%|█▎ | 5/40 [00:08<00:59, 1.71s/it] 15%|█▌ | 6/40 [00:10<00:58, 1.71s/it] 18%|█▊ | 7/40 [00:11<00:56, 1.71s/it] 20%|██ | 8/40 [00:13<00:54, 1.71s/it] 22%|██▎ | 9/40 [00:15<00:52, 1.71s/it] 25%|██▌ | 10/40 [00:17<00:51, 1.71s/it] 28%|██▊ | 11/40 [00:18<00:49, 1.71s/it] 30%|███ | 12/40 [00:20<00:47, 1.71s/it] 32%|███▎ | 13/40 [00:22<00:46, 1.71s/it] 35%|███▌ | 14/40 [00:23<00:44, 1.71s/it] 38%|███▊ | 15/40 [00:25<00:42, 1.71s/it] 40%|████ | 16/40 [00:27<00:41, 1.71s/it] 42%|████▎ | 17/40 [00:29<00:39, 1.71s/it] 45%|████▌ | 18/40 [00:30<00:37, 1.71s/it] 48%|████▊ | 19/40 [00:32<00:36, 1.72s/it] 50%|█████ | 20/40 [00:34<00:34, 1.72s/it] 52%|█████▎ | 21/40 [00:35<00:32, 1.72s/it] 55%|█████▌ | 22/40 [00:37<00:30, 1.72s/it] 57%|█████▊ | 23/40 [00:39<00:29, 1.72s/it] 60%|██████ | 24/40 [00:41<00:27, 1.72s/it] 62%|██████▎ | 25/40 [00:42<00:25, 1.72s/it] 65%|██████▌ | 26/40 [00:44<00:24, 1.72s/it] 68%|██████▊ | 27/40 [00:46<00:22, 1.72s/it] 70%|███████ | 28/40 [00:47<00:20, 1.72s/it] 72%|███████▎ | 29/40 [00:49<00:18, 1.72s/it] 75%|███████▌ | 30/40 [00:51<00:17, 1.72s/it] 78%|███████▊ | 31/40 [00:53<00:15, 1.72s/it] 80%|████████ | 32/40 [00:54<00:13, 1.72s/it] 82%|████████▎ | 33/40 [00:56<00:12, 1.72s/it] 85%|████████▌ | 34/40 [00:58<00:10, 1.72s/it] 88%|████████▊ | 35/40 [01:00<00:08, 1.72s/it] 90%|█████████ | 36/40 [01:01<00:06, 1.72s/it] 92%|█████████▎| 37/40 [01:03<00:05, 1.72s/it] 95%|█████████▌| 38/40 [01:05<00:03, 1.72s/it] 98%|█████████▊| 39/40 [01:06<00:01, 1.72s/it] 100%|██████████| 40/40 [01:08<00:00, 1.72s/it] 100%|██████████| 40/40 [01:08<00:00, 1.72s/it]
Prediction
sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9eModelID6xuqgvdbqr7scsvlu5owdzfwbeStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- In the style of TOK, a photo of a modern kitchen, oven, white marble island
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/JrdgbuPDC07wT8PHRXcUhOaaVlpqR6FjWGtAZ1R5tj4LqyAk/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, oven, white marble island", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", { input: { image: "https://replicate.delivery/pbxt/JrdgbuPDC07wT8PHRXcUhOaaVlpqR6FjWGtAZ1R5tj4LqyAk/Screenshot%202023-11-12%20at%2013.46.28.png", width: 1024, height: 1024, prompt: "In the style of TOK, a photo of a modern kitchen, oven, white marble island", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 4, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", input={ "image": "https://replicate.delivery/pbxt/JrdgbuPDC07wT8PHRXcUhOaaVlpqR6FjWGtAZ1R5tj4LqyAk/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, oven, white marble island", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sidhq/vzug using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sidhq/vzug:418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e", "input": { "image": "https://replicate.delivery/pbxt/JrdgbuPDC07wT8PHRXcUhOaaVlpqR6FjWGtAZ1R5tj4LqyAk/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, oven, white marble island", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T12:58:09.373010Z", "created_at": "2023-11-12T12:56:45.782381Z", "data_removed": false, "error": null, "id": "6xuqgvdbqr7scsvlu5owdzfwbe", "input": { "image": "https://replicate.delivery/pbxt/JrdgbuPDC07wT8PHRXcUhOaaVlpqR6FjWGtAZ1R5tj4LqyAk/Screenshot%202023-11-12%20at%2013.46.28.png", "width": 1024, "height": 1024, "prompt": "In the style of TOK, a photo of a modern kitchen, oven, white marble island", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 44019\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of <s0><s1>, a photo of a modern kitchen, oven, white marble island\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:01<01:06, 1.71s/it]\n 5%|▌ | 2/40 [00:03<01:04, 1.70s/it]\n 8%|▊ | 3/40 [00:05<01:02, 1.70s/it]\n 10%|█ | 4/40 [00:06<01:01, 1.70s/it]\n 12%|█▎ | 5/40 [00:08<00:59, 1.70s/it]\n 15%|█▌ | 6/40 [00:10<00:57, 1.70s/it]\n 18%|█▊ | 7/40 [00:11<00:56, 1.70s/it]\n 20%|██ | 8/40 [00:13<00:54, 1.70s/it]\n 22%|██▎ | 9/40 [00:15<00:52, 1.70s/it]\n 25%|██▌ | 10/40 [00:17<00:51, 1.71s/it]\n 28%|██▊ | 11/40 [00:18<00:49, 1.71s/it]\n 30%|███ | 12/40 [00:20<00:47, 1.71s/it]\n 32%|███▎ | 13/40 [00:22<00:46, 1.71s/it]\n 35%|███▌ | 14/40 [00:23<00:44, 1.71s/it]\n 38%|███▊ | 15/40 [00:25<00:42, 1.71s/it]\n 40%|████ | 16/40 [00:27<00:40, 1.71s/it]\n 42%|████▎ | 17/40 [00:28<00:39, 1.71s/it]\n 45%|████▌ | 18/40 [00:30<00:37, 1.71s/it]\n 48%|████▊ | 19/40 [00:32<00:35, 1.71s/it]\n 50%|█████ | 20/40 [00:34<00:34, 1.71s/it]\n 52%|█████▎ | 21/40 [00:35<00:32, 1.71s/it]\n 55%|█████▌ | 22/40 [00:37<00:30, 1.71s/it]\n 57%|█████▊ | 23/40 [00:39<00:29, 1.71s/it]\n 60%|██████ | 24/40 [00:40<00:27, 1.71s/it]\n 62%|██████▎ | 25/40 [00:42<00:25, 1.71s/it]\n 65%|██████▌ | 26/40 [00:44<00:23, 1.71s/it]\n 68%|██████▊ | 27/40 [00:46<00:22, 1.71s/it]\n 70%|███████ | 28/40 [00:47<00:20, 1.71s/it]\n 72%|███████▎ | 29/40 [00:49<00:18, 1.71s/it]\n 75%|███████▌ | 30/40 [00:51<00:17, 1.71s/it]\n 78%|███████▊ | 31/40 [00:52<00:15, 1.71s/it]\n 80%|████████ | 32/40 [00:54<00:13, 1.71s/it]\n 82%|████████▎ | 33/40 [00:56<00:11, 1.71s/it]\n 85%|████████▌ | 34/40 [00:58<00:10, 1.71s/it]\n 88%|████████▊ | 35/40 [00:59<00:08, 1.71s/it]\n 90%|█████████ | 36/40 [01:01<00:06, 1.71s/it]\n 92%|█████████▎| 37/40 [01:03<00:05, 1.71s/it]\n 95%|█████████▌| 38/40 [01:04<00:03, 1.71s/it]\n 98%|█████████▊| 39/40 [01:06<00:01, 1.71s/it]\n100%|██████████| 40/40 [01:08<00:00, 1.71s/it]\n100%|██████████| 40/40 [01:08<00:00, 1.71s/it]", "metrics": { "predict_time": 78.273005, "total_time": 83.590629 }, "output": [ "https://replicate.delivery/pbxt/gGjXsyAf0zVVEK7F7tWVcCuO2xYlsDkaxFjoL3yiKcyv7z7IA/out-0.png", "https://replicate.delivery/pbxt/eQRNclymiywyMK9NeVOT2u6PmsYTCS5Pjil5B3FB06Yg3n3RA/out-1.png", "https://replicate.delivery/pbxt/Uumee8JcRJjbNUuuAwTfDkBeD9UMf8YvdnTrnnGiskvA8e5dE/out-2.png", "https://replicate.delivery/pbxt/kNBGp8jfOP01BKeXTGZd69KLkI9E0I7FifXmAewD0iJGee5dE/out-3.png" ], "started_at": "2023-11-12T12:56:51.100005Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6xuqgvdbqr7scsvlu5owdzfwbe", "cancel": "https://api.replicate.com/v1/predictions/6xuqgvdbqr7scsvlu5owdzfwbe/cancel" }, "version": "418eb37d8a356b42e3aed25fb8bf44f49324c4a62738e61b6bf760b604f96f9e" }
Generated inUsing seed: 44019 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: In the style of <s0><s1>, a photo of a modern kitchen, oven, white marble island img2img mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:01<01:06, 1.71s/it] 5%|▌ | 2/40 [00:03<01:04, 1.70s/it] 8%|▊ | 3/40 [00:05<01:02, 1.70s/it] 10%|█ | 4/40 [00:06<01:01, 1.70s/it] 12%|█▎ | 5/40 [00:08<00:59, 1.70s/it] 15%|█▌ | 6/40 [00:10<00:57, 1.70s/it] 18%|█▊ | 7/40 [00:11<00:56, 1.70s/it] 20%|██ | 8/40 [00:13<00:54, 1.70s/it] 22%|██▎ | 9/40 [00:15<00:52, 1.70s/it] 25%|██▌ | 10/40 [00:17<00:51, 1.71s/it] 28%|██▊ | 11/40 [00:18<00:49, 1.71s/it] 30%|███ | 12/40 [00:20<00:47, 1.71s/it] 32%|███▎ | 13/40 [00:22<00:46, 1.71s/it] 35%|███▌ | 14/40 [00:23<00:44, 1.71s/it] 38%|███▊ | 15/40 [00:25<00:42, 1.71s/it] 40%|████ | 16/40 [00:27<00:40, 1.71s/it] 42%|████▎ | 17/40 [00:28<00:39, 1.71s/it] 45%|████▌ | 18/40 [00:30<00:37, 1.71s/it] 48%|████▊ | 19/40 [00:32<00:35, 1.71s/it] 50%|█████ | 20/40 [00:34<00:34, 1.71s/it] 52%|█████▎ | 21/40 [00:35<00:32, 1.71s/it] 55%|█████▌ | 22/40 [00:37<00:30, 1.71s/it] 57%|█████▊ | 23/40 [00:39<00:29, 1.71s/it] 60%|██████ | 24/40 [00:40<00:27, 1.71s/it] 62%|██████▎ | 25/40 [00:42<00:25, 1.71s/it] 65%|██████▌ | 26/40 [00:44<00:23, 1.71s/it] 68%|██████▊ | 27/40 [00:46<00:22, 1.71s/it] 70%|███████ | 28/40 [00:47<00:20, 1.71s/it] 72%|███████▎ | 29/40 [00:49<00:18, 1.71s/it] 75%|███████▌ | 30/40 [00:51<00:17, 1.71s/it] 78%|███████▊ | 31/40 [00:52<00:15, 1.71s/it] 80%|████████ | 32/40 [00:54<00:13, 1.71s/it] 82%|████████▎ | 33/40 [00:56<00:11, 1.71s/it] 85%|████████▌ | 34/40 [00:58<00:10, 1.71s/it] 88%|████████▊ | 35/40 [00:59<00:08, 1.71s/it] 90%|█████████ | 36/40 [01:01<00:06, 1.71s/it] 92%|█████████▎| 37/40 [01:03<00:05, 1.71s/it] 95%|█████████▌| 38/40 [01:04<00:03, 1.71s/it] 98%|█████████▊| 39/40 [01:06<00:01, 1.71s/it] 100%|██████████| 40/40 [01:08<00:00, 1.71s/it] 100%|██████████| 40/40 [01:08<00:00, 1.71s/it]
Want to make some of these yourself?
Run this model