sliday/anatomy

Somewhat precise anatomical images trained on the 1918 edition of Gray’s Anatomy medical textbook.
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDk4fe8js1d1rm00cjnxt94vz9trStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- height
- 256
- prompt
- ANAT0MY, medical textbook schematics, vertigo, headaches, and anxiety
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 21:9
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "height": 256, "prompt": "ANAT0MY, medical textbook schematics, vertigo, headaches, and anxiety", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { model: "dev", height: 256, prompt: "ANAT0MY, medical textbook schematics, vertigo, headaches, and anxiety", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "21:9", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "model": "dev", "height": 256, "prompt": "ANAT0MY, medical textbook schematics, vertigo, headaches, and anxiety", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "model": "dev", "height": 256, "prompt": "ANAT0MY, medical textbook schematics, vertigo, headaches, and anxiety", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:21:28.045677Z", "created_at": "2024-10-21T14:21:16.520000Z", "data_removed": false, "error": null, "id": "k4fe8js1d1rm00cjnxt94vz9tr", "input": { "model": "dev", "height": 256, "prompt": "ANAT0MY, medical textbook schematics, vertigo, headaches, and anxiety", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 63167\nPrompt: ANAT0MY, medical textbook schematics, vertigo, headaches, and anxiety\n[!] txt2img mode\nUsing dev model\nfree=6857580150784\nDownloading weights\n2024-10-21T14:21:16Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpedn4l8e3/weights url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar\n2024-10-21T14:21:17Z | INFO | [ Complete ] dest=/tmp/tmpedn4l8e3/weights size=\"174 MB\" total_elapsed=1.203s url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar\nDownloaded weights in 1.26s\nLoaded LoRAs in 2.01s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.96it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.23it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.14it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.10it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.08it/s]\n 21%|██▏ | 6/28 [00:01<00:07, 3.06it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.05it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.05it/s]\n 32%|███▏ | 9/28 [00:02<00:06, 3.04it/s]\n 36%|███▌ | 10/28 [00:03<00:05, 3.04it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.04it/s]\n 43%|████▎ | 12/28 [00:03<00:05, 3.04it/s]\n 46%|████▋ | 13/28 [00:04<00:04, 3.04it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.04it/s]\n 54%|█████▎ | 15/28 [00:04<00:04, 3.04it/s]\n 57%|█████▋ | 16/28 [00:05<00:03, 3.04it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.04it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.04it/s]\n 68%|██████▊ | 19/28 [00:06<00:02, 3.04it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.04it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.04it/s]\n 79%|███████▊ | 22/28 [00:07<00:01, 3.04it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 3.04it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.04it/s]\n 89%|████████▉ | 25/28 [00:08<00:00, 3.04it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 3.04it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.04it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.04it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.05it/s]", "metrics": { "predict_time": 11.516176758, "total_time": 11.525677 }, "output": [ "https://replicate.delivery/yhqm/Ub2M1fLm6O3YCaV7eeq94huStBcQieSmhCGdKRWtnmziWFkOB/out-0.webp" ], "started_at": "2024-10-21T14:21:16.529500Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/k4fe8js1d1rm00cjnxt94vz9tr", "cancel": "https://api.replicate.com/v1/predictions/k4fe8js1d1rm00cjnxt94vz9tr/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 63167 Prompt: ANAT0MY, medical textbook schematics, vertigo, headaches, and anxiety [!] txt2img mode Using dev model free=6857580150784 Downloading weights 2024-10-21T14:21:16Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpedn4l8e3/weights url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar 2024-10-21T14:21:17Z | INFO | [ Complete ] dest=/tmp/tmpedn4l8e3/weights size="174 MB" total_elapsed=1.203s url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar Downloaded weights in 1.26s Loaded LoRAs in 2.01s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.96it/s] 7%|▋ | 2/28 [00:00<00:08, 3.23it/s] 11%|█ | 3/28 [00:00<00:07, 3.14it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.10it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.08it/s] 21%|██▏ | 6/28 [00:01<00:07, 3.06it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.05it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.05it/s] 32%|███▏ | 9/28 [00:02<00:06, 3.04it/s] 36%|███▌ | 10/28 [00:03<00:05, 3.04it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.04it/s] 43%|████▎ | 12/28 [00:03<00:05, 3.04it/s] 46%|████▋ | 13/28 [00:04<00:04, 3.04it/s] 50%|█████ | 14/28 [00:04<00:04, 3.04it/s] 54%|█████▎ | 15/28 [00:04<00:04, 3.04it/s] 57%|█████▋ | 16/28 [00:05<00:03, 3.04it/s] 61%|██████ | 17/28 [00:05<00:03, 3.04it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.04it/s] 68%|██████▊ | 19/28 [00:06<00:02, 3.04it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.04it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.04it/s] 79%|███████▊ | 22/28 [00:07<00:01, 3.04it/s] 82%|████████▏ | 23/28 [00:07<00:01, 3.04it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.04it/s] 89%|████████▉ | 25/28 [00:08<00:00, 3.04it/s] 93%|█████████▎| 26/28 [00:08<00:00, 3.04it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.04it/s] 100%|██████████| 28/28 [00:09<00:00, 3.04it/s] 100%|██████████| 28/28 [00:09<00:00, 3.05it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9ID9kh5gq5f5srm40cjnxva1kx7arStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- height
- 512
- prompt
- ANAT0MY, medical textbook schematics, Olanzapine
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 4:5
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "height": 512, "prompt": "ANAT0MY, medical textbook schematics, Olanzapine", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { model: "dev", height: 512, prompt: "ANAT0MY, medical textbook schematics, Olanzapine", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "4:5", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "model": "dev", "height": 512, "prompt": "ANAT0MY, medical textbook schematics, Olanzapine", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "model": "dev", "height": 512, "prompt": "ANAT0MY, medical textbook schematics, Olanzapine", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:24:15.416834Z", "created_at": "2024-10-21T14:24:03.886000Z", "data_removed": false, "error": null, "id": "9kh5gq5f5srm40cjnxva1kx7ar", "input": { "model": "dev", "height": 512, "prompt": "ANAT0MY, medical textbook schematics, Olanzapine", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 43284\nPrompt: ANAT0MY, medical textbook schematics, Olanzapine\n[!] txt2img mode\nUsing dev model\nfree=8913213825024\nDownloading weights\n2024-10-21T14:24:03Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpwgu4l5yh/weights url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar\n2024-10-21T14:24:05Z | INFO | [ Complete ] dest=/tmp/tmpwgu4l5yh/weights size=\"174 MB\" total_elapsed=1.098s url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar\nDownloaded weights in 1.22s\nLoaded LoRAs in 1.94s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 3.00it/s]\n 7%|▋ | 2/28 [00:00<00:07, 3.29it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.18it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.14it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.11it/s]\n 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.09it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.08it/s]\n 32%|███▏ | 9/28 [00:02<00:06, 3.08it/s]\n 36%|███▌ | 10/28 [00:03<00:05, 3.07it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.07it/s]\n 43%|████▎ | 12/28 [00:03<00:05, 3.07it/s]\n 46%|████▋ | 13/28 [00:04<00:04, 3.07it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.07it/s]\n 54%|█████▎ | 15/28 [00:04<00:04, 3.07it/s]\n 57%|█████▋ | 16/28 [00:05<00:03, 3.07it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.07it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.06it/s]\n 68%|██████▊ | 19/28 [00:06<00:02, 3.06it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.07it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.07it/s]\n 79%|███████▊ | 22/28 [00:07<00:01, 3.06it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 3.06it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.07it/s]\n 89%|████████▉ | 25/28 [00:08<00:00, 3.07it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 3.07it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.07it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.07it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.08it/s]", "metrics": { "predict_time": 11.520803416, "total_time": 11.530834 }, "output": [ "https://replicate.delivery/yhqm/QWA5F8Qp5oJPA5aoi7peguiXrfhcCLvfSGBw9pOzL4CegFkOB/out-0.webp" ], "started_at": "2024-10-21T14:24:03.896031Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/9kh5gq5f5srm40cjnxva1kx7ar", "cancel": "https://api.replicate.com/v1/predictions/9kh5gq5f5srm40cjnxva1kx7ar/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 43284 Prompt: ANAT0MY, medical textbook schematics, Olanzapine [!] txt2img mode Using dev model free=8913213825024 Downloading weights 2024-10-21T14:24:03Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpwgu4l5yh/weights url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar 2024-10-21T14:24:05Z | INFO | [ Complete ] dest=/tmp/tmpwgu4l5yh/weights size="174 MB" total_elapsed=1.098s url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar Downloaded weights in 1.22s Loaded LoRAs in 1.94s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 3.00it/s] 7%|▋ | 2/28 [00:00<00:07, 3.29it/s] 11%|█ | 3/28 [00:00<00:07, 3.18it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.14it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.11it/s] 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.09it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.08it/s] 32%|███▏ | 9/28 [00:02<00:06, 3.08it/s] 36%|███▌ | 10/28 [00:03<00:05, 3.07it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.07it/s] 43%|████▎ | 12/28 [00:03<00:05, 3.07it/s] 46%|████▋ | 13/28 [00:04<00:04, 3.07it/s] 50%|█████ | 14/28 [00:04<00:04, 3.07it/s] 54%|█████▎ | 15/28 [00:04<00:04, 3.07it/s] 57%|█████▋ | 16/28 [00:05<00:03, 3.07it/s] 61%|██████ | 17/28 [00:05<00:03, 3.07it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.06it/s] 68%|██████▊ | 19/28 [00:06<00:02, 3.06it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.07it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.07it/s] 79%|███████▊ | 22/28 [00:07<00:01, 3.06it/s] 82%|████████▏ | 23/28 [00:07<00:01, 3.06it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.07it/s] 89%|████████▉ | 25/28 [00:08<00:00, 3.07it/s] 93%|█████████▎| 26/28 [00:08<00:00, 3.07it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.07it/s] 100%|██████████| 28/28 [00:09<00:00, 3.07it/s] 100%|██████████| 28/28 [00:09<00:00, 3.08it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDwh38nr7n6xrm00cjnxyrk2jmj4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 37103
- model
- dev
- prompt
- ANAT0MY, simplified medical textbook schematics, ear
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 21:9
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, simplified medical textbook schematics, ear", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { seed: 37103, model: "dev", prompt: "ANAT0MY, simplified medical textbook schematics, ear", lora_scale: 1, num_outputs: 1, aspect_ratio: "21:9", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, simplified medical textbook schematics, ear", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, simplified medical textbook schematics, ear", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:32:11.553977Z", "created_at": "2024-10-21T14:32:00.567000Z", "data_removed": false, "error": null, "id": "wh38nr7n6xrm00cjnxyrk2jmj4", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, simplified medical textbook schematics, ear", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37103\nPrompt: ANAT0MY, simplified medical textbook schematics, ear\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 0.59s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.05it/s]\n 7%|▋ | 2/28 [00:00<00:07, 3.40it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.23it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.15it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.12it/s]\n 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.08it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.07it/s]\n 32%|███▏ | 9/28 [00:02<00:06, 3.06it/s]\n 36%|███▌ | 10/28 [00:03<00:05, 3.06it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.05it/s]\n 43%|████▎ | 12/28 [00:03<00:05, 3.05it/s]\n 46%|████▋ | 13/28 [00:04<00:04, 3.05it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.05it/s]\n 54%|█████▎ | 15/28 [00:04<00:04, 3.05it/s]\n 57%|█████▋ | 16/28 [00:05<00:03, 3.05it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.05it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.05it/s]\n 68%|██████▊ | 19/28 [00:06<00:02, 3.05it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.05it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.05it/s]\n 79%|███████▊ | 22/28 [00:07<00:01, 3.05it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 3.05it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.05it/s]\n 89%|████████▉ | 25/28 [00:08<00:00, 3.05it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 3.04it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.04it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.04it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.07it/s]", "metrics": { "predict_time": 10.584360285, "total_time": 10.986977 }, "output": [ "https://replicate.delivery/yhqm/AbnVM5pVWdbfeUZ7meOWQjDD0eeKfxdu5ffENQC1kyMqrfCSnA/out-0.webp" ], "started_at": "2024-10-21T14:32:00.969617Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/wh38nr7n6xrm00cjnxyrk2jmj4", "cancel": "https://api.replicate.com/v1/predictions/wh38nr7n6xrm00cjnxyrk2jmj4/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 37103 Prompt: ANAT0MY, simplified medical textbook schematics, ear [!] txt2img mode Using dev model Loaded LoRAs in 0.59s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.05it/s] 7%|▋ | 2/28 [00:00<00:07, 3.40it/s] 11%|█ | 3/28 [00:00<00:07, 3.23it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.15it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.12it/s] 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.08it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.07it/s] 32%|███▏ | 9/28 [00:02<00:06, 3.06it/s] 36%|███▌ | 10/28 [00:03<00:05, 3.06it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.05it/s] 43%|████▎ | 12/28 [00:03<00:05, 3.05it/s] 46%|████▋ | 13/28 [00:04<00:04, 3.05it/s] 50%|█████ | 14/28 [00:04<00:04, 3.05it/s] 54%|█████▎ | 15/28 [00:04<00:04, 3.05it/s] 57%|█████▋ | 16/28 [00:05<00:03, 3.05it/s] 61%|██████ | 17/28 [00:05<00:03, 3.05it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.05it/s] 68%|██████▊ | 19/28 [00:06<00:02, 3.05it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.05it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.05it/s] 79%|███████▊ | 22/28 [00:07<00:01, 3.05it/s] 82%|████████▏ | 23/28 [00:07<00:01, 3.05it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.05it/s] 89%|████████▉ | 25/28 [00:08<00:00, 3.05it/s] 93%|█████████▎| 26/28 [00:08<00:00, 3.04it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.04it/s] 100%|██████████| 28/28 [00:09<00:00, 3.04it/s] 100%|██████████| 28/28 [00:09<00:00, 3.07it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDewqeb3j8s1rm40cjnxzbc2a8erStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 37103
- model
- dev
- prompt
- ANAT0MY, simplified medical textbook schematics, ear
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, simplified medical textbook schematics, ear", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { seed: 37103, model: "dev", prompt: "ANAT0MY, simplified medical textbook schematics, ear", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, simplified medical textbook schematics, ear", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, simplified medical textbook schematics, ear", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:32:31.986488Z", "created_at": "2024-10-21T14:32:21.960000Z", "data_removed": false, "error": null, "id": "ewqeb3j8s1rm40cjnxzbc2a8er", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, simplified medical textbook schematics, ear", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37103\nPrompt: ANAT0MY, simplified medical textbook schematics, ear\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.87it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]", "metrics": { "predict_time": 10.018659144, "total_time": 10.026488 }, "output": [ "https://replicate.delivery/yhqm/F3o1d3VTkzZeZaOW5OGuwem8AUeqSNcsQCZBzCig1ESffLIdC/out-0.webp" ], "started_at": "2024-10-21T14:32:21.967829Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ewqeb3j8s1rm40cjnxzbc2a8er", "cancel": "https://api.replicate.com/v1/predictions/ewqeb3j8s1rm40cjnxzbc2a8er/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 37103 Prompt: ANAT0MY, simplified medical textbook schematics, ear [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.88it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.87it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDvkj9c9phnsrm20cjnxzace4k5cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 37103
- model
- dev
- prompt
- ANAT0MY, anatomically correct medical textbook schematics, nose
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, nose", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { seed: 37103, model: "dev", prompt: "ANAT0MY, anatomically correct medical textbook schematics, nose", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, nose", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, nose", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:33:07.999555Z", "created_at": "2024-10-21T14:32:57.006000Z", "data_removed": false, "error": null, "id": "vkj9c9phnsrm20cjnxzace4k5c", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, nose", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37103\nPrompt: ANAT0MY, anatomically correct medical textbook schematics, nose\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 0.61s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.89it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.94it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.92it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.92it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.91it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.91it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.90it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.90it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.90it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.90it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.90it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.90it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.90it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.90it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.89it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.89it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.89it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.89it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.89it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.89it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.91it/s]", "metrics": { "predict_time": 10.557712278, "total_time": 10.993555 }, "output": [ "https://replicate.delivery/yhqm/evRWeb9evDSFyIuDMG2evznqHfqdeKGxDoJsvilabMm0IYQ6E/out-0.webp" ], "started_at": "2024-10-21T14:32:57.441843Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vkj9c9phnsrm20cjnxzace4k5c", "cancel": "https://api.replicate.com/v1/predictions/vkj9c9phnsrm20cjnxzace4k5c/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 37103 Prompt: ANAT0MY, anatomically correct medical textbook schematics, nose [!] txt2img mode Using dev model Loaded LoRAs in 0.61s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.89it/s] 7%|▋ | 2/28 [00:00<00:08, 3.22it/s] 11%|█ | 3/28 [00:00<00:08, 3.06it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.94it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.92it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.92it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.91it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.91it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.90it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.90it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.90it/s] 50%|█████ | 14/28 [00:04<00:04, 2.90it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.90it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.90it/s] 61%|██████ | 17/28 [00:05<00:03, 2.90it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.90it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.89it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.89it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.89it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.89it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.89it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.89it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s] 100%|██████████| 28/28 [00:09<00:00, 2.91it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDvnqar22j0xrm00cjnxzrjkht88StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 37103
- model
- dev
- prompt
- ANAT0MY, anatomically correct medical textbook schematics, arm
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, arm", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { seed: 37103, model: "dev", prompt: "ANAT0MY, anatomically correct medical textbook schematics, arm", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, arm", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, arm", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:33:39.841886Z", "created_at": "2024-10-21T14:33:29.863000Z", "data_removed": false, "error": null, "id": "vnqar22j0xrm00cjnxzrjkht88", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, arm", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37103\nPrompt: ANAT0MY, anatomically correct medical textbook schematics, arm\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.89it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.96it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.94it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.92it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.91it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.91it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.90it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.90it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.90it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.90it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.90it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.90it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.90it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.90it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.90it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.90it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.90it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.90it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.90it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.90it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.90it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.90it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.90it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.90it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.91it/s]", "metrics": { "predict_time": 9.969217458, "total_time": 9.978886 }, "output": [ "https://replicate.delivery/yhqm/oyakbljIf8XlGapybOJW5BYjVcdAuT5yPwxaxI1Y2Twhwg0JA/out-0.webp" ], "started_at": "2024-10-21T14:33:29.872668Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vnqar22j0xrm00cjnxzrjkht88", "cancel": "https://api.replicate.com/v1/predictions/vnqar22j0xrm00cjnxzrjkht88/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 37103 Prompt: ANAT0MY, anatomically correct medical textbook schematics, arm [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.89it/s] 7%|▋ | 2/28 [00:00<00:08, 3.22it/s] 11%|█ | 3/28 [00:00<00:08, 3.06it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.96it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.94it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.92it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.91it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.91it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.90it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.90it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.90it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.90it/s] 50%|█████ | 14/28 [00:04<00:04, 2.90it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.90it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.90it/s] 61%|██████ | 17/28 [00:05<00:03, 2.90it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.90it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.90it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.90it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.90it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.90it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.90it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.90it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.90it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.90it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.90it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s] 100%|██████████| 28/28 [00:09<00:00, 2.91it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDe981vxp2x9rm00cjnxzr9w8g04StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 37103
- model
- dev
- prompt
- ANAT0MY, anatomically correct medical textbook schematics, neck
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, neck", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { seed: 37103, model: "dev", prompt: "ANAT0MY, anatomically correct medical textbook schematics, neck", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, neck", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, neck", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:34:08.735039Z", "created_at": "2024-10-21T14:33:58.762000Z", "data_removed": false, "error": null, "id": "e981vxp2x9rm00cjnxzr9w8g04", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, neck", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37103\nPrompt: ANAT0MY, anatomically correct medical textbook schematics, neck\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.89it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.92it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.91it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.91it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.90it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.90it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.90it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.90it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.90it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.90it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.90it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.90it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.90it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.90it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.90it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.90it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.90it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.90it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.90it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.90it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.90it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.90it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.91it/s]", "metrics": { "predict_time": 9.956953844000001, "total_time": 9.973039 }, "output": [ "https://replicate.delivery/yhqm/tzkM2illOfT0TSzitxAgpnhn2kTpYZjPIdiG0kmXIndwwg0JA/out-0.webp" ], "started_at": "2024-10-21T14:33:58.778085Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/e981vxp2x9rm00cjnxzr9w8g04", "cancel": "https://api.replicate.com/v1/predictions/e981vxp2x9rm00cjnxzr9w8g04/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 37103 Prompt: ANAT0MY, anatomically correct medical textbook schematics, neck [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.89it/s] 7%|▋ | 2/28 [00:00<00:08, 3.22it/s] 11%|█ | 3/28 [00:00<00:08, 3.06it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.92it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.91it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.91it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.90it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.90it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.90it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.90it/s] 50%|█████ | 14/28 [00:04<00:04, 2.90it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.90it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.90it/s] 61%|██████ | 17/28 [00:05<00:03, 2.90it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.90it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.90it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.90it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.90it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.90it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.90it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.90it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.90it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.90it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.90it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s] 100%|██████████| 28/28 [00:09<00:00, 2.91it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDaa92wzg9khrm20cjny0by1qx0rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 37103
- model
- dev
- prompt
- ANAT0MY, anatomically correct medical textbook schematics, cell
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { seed: 37103, model: "dev", prompt: "ANAT0MY, anatomically correct medical textbook schematics, cell", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:34:29.004298Z", "created_at": "2024-10-21T14:34:16.860000Z", "data_removed": false, "error": null, "id": "aa92wzg9khrm20cjny0by1qx0r", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37103\nPrompt: ANAT0MY, anatomically correct medical textbook schematics, cell\n[!] txt2img mode\nUsing dev model\nfree=7114631766016\nDownloading weights\n2024-10-21T14:34:17Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpzp35bygw/weights url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar\n2024-10-21T14:34:18Z | INFO | [ Complete ] dest=/tmp/tmpzp35bygw/weights size=\"174 MB\" total_elapsed=1.303s url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar\nDownloaded weights in 1.37s\nLoaded LoRAs in 1.96s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.87it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]", "metrics": { "predict_time": 11.965978191, "total_time": 12.144298 }, "output": [ "https://replicate.delivery/yhqm/clXi4JAJTg4tOdS0qASKLebL1oB76aAIWuJwyNWKQUF6wg0JA/out-0.webp" ], "started_at": "2024-10-21T14:34:17.038320Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/aa92wzg9khrm20cjny0by1qx0r", "cancel": "https://api.replicate.com/v1/predictions/aa92wzg9khrm20cjny0by1qx0r/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 37103 Prompt: ANAT0MY, anatomically correct medical textbook schematics, cell [!] txt2img mode Using dev model free=7114631766016 Downloading weights 2024-10-21T14:34:17Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpzp35bygw/weights url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar 2024-10-21T14:34:18Z | INFO | [ Complete ] dest=/tmp/tmpzp35bygw/weights size="174 MB" total_elapsed=1.303s url=https://replicate.delivery/yhqm/fmfTwYRejJTv3omNu2HA1vUckf7lUbpRj1dFgBRK3WzfYzHdC/trained_model.tar Downloaded weights in 1.37s Loaded LoRAs in 1.96s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.88it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s] 61%|██████ | 17/28 [00:05<00:03, 2.87it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9ID4pat8bth5srm40cjny087z2z20StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 37103
- model
- dev
- prompt
- ANAT0MY, anatomically correct medical textbook schematics, brain cell
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, brain cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { seed: 37103, model: "dev", prompt: "ANAT0MY, anatomically correct medical textbook schematics, brain cell", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, brain cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, brain cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:34:45.226839Z", "created_at": "2024-10-21T14:34:35.182000Z", "data_removed": false, "error": null, "id": "4pat8bth5srm40cjny087z2z20", "input": { "seed": 37103, "model": "dev", "prompt": "ANAT0MY, anatomically correct medical textbook schematics, brain cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37103\nPrompt: ANAT0MY, anatomically correct medical textbook schematics, brain cell\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 10.036395489, "total_time": 10.044839 }, "output": [ "https://replicate.delivery/yhqm/TBjzpVSfsFSuY65euSEZUOraeJvXSPpEnOKCKvnKeDSWIGkOB/out-0.webp" ], "started_at": "2024-10-21T14:34:35.190444Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4pat8bth5srm40cjny087z2z20", "cancel": "https://api.replicate.com/v1/predictions/4pat8bth5srm40cjny087z2z20/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 37103 Prompt: ANAT0MY, anatomically correct medical textbook schematics, brain cell [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDbw1ymp0exnrm60cjny0sbvfgpgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- ANAT0MY, medical illustration of a bone cell
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "ANAT0MY, medical illustration of a bone cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { model: "dev", prompt: "ANAT0MY, medical illustration of a bone cell", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "model": "dev", "prompt": "ANAT0MY, medical illustration of a bone cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "model": "dev", "prompt": "ANAT0MY, medical illustration of a bone cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:35:34.608145Z", "created_at": "2024-10-21T14:35:23.757000Z", "data_removed": false, "error": null, "id": "bw1ymp0exnrm60cjny0sbvfgpg", "input": { "model": "dev", "prompt": "ANAT0MY, medical illustration of a bone cell", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 37791\nPrompt: ANAT0MY, medical illustration of a bone cell\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 0.71s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.20it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.04it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.93it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.89it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.88it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.87it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.87it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.87it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.87it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.87it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.87it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s]\n 93%|█████████▎| 26/28 [00:09<00:00, 2.87it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]", "metrics": { "predict_time": 10.760606355, "total_time": 10.851145 }, "output": [ "https://replicate.delivery/yhqm/bP0JQEyEx7b8J92hq4bmV9xTwAEFavp4KQquYWk394rtYQ6E/out-0.webp" ], "started_at": "2024-10-21T14:35:23.847539Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bw1ymp0exnrm60cjny0sbvfgpg", "cancel": "https://api.replicate.com/v1/predictions/bw1ymp0exnrm60cjny0sbvfgpg/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 37791 Prompt: ANAT0MY, medical illustration of a bone cell [!] txt2img mode Using dev model Loaded LoRAs in 0.71s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.20it/s] 11%|█ | 3/28 [00:00<00:08, 3.04it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.93it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.89it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.88it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.87it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.87it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.87it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.87it/s] 50%|█████ | 14/28 [00:04<00:04, 2.87it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s] 61%|██████ | 17/28 [00:05<00:03, 2.87it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s] 93%|█████████▎| 26/28 [00:09<00:00, 2.87it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s]
Prediction
sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9IDz8z2sncjsnrm00cjny0razscb4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- ANAT0MY, medical illustration of mitochondria
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "ANAT0MY, medical illustration of mitochondria", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", { input: { model: "dev", prompt: "ANAT0MY, medical illustration of mitochondria", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", input={ "model": "dev", "prompt": "ANAT0MY, medical illustration of mitochondria", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run sliday/anatomy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sliday/anatomy:45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9", "input": { "model": "dev", "prompt": "ANAT0MY, medical illustration of mitochondria", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-21T14:36:07.587898Z", "created_at": "2024-10-21T14:35:57.517000Z", "data_removed": false, "error": null, "id": "z8z2sncjsnrm00cjny0razscb4", "input": { "model": "dev", "prompt": "ANAT0MY, medical illustration of mitochondria", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 18294\nPrompt: ANAT0MY, medical illustration of mitochondria\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.20it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.04it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.93it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.88it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.87it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.87it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.87it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.87it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.87it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s]\n 93%|█████████▎| 26/28 [00:09<00:00, 2.87it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.87it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]", "metrics": { "predict_time": 10.062026999, "total_time": 10.070898 }, "output": [ "https://replicate.delivery/yhqm/ACrxLR22HT68FRMR99eqslaCR4A5TvaYFez0lreHG4UuGDSnA/out-0.webp" ], "started_at": "2024-10-21T14:35:57.525871Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/z8z2sncjsnrm00cjny0razscb4", "cancel": "https://api.replicate.com/v1/predictions/z8z2sncjsnrm00cjny0razscb4/cancel" }, "version": "45a3dfdbbd7b724c2bc1be813cb25628e73595ca59ee38c3a4ea78a27804c2e9" }
Generated inUsing seed: 18294 Prompt: ANAT0MY, medical illustration of mitochondria [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.20it/s] 11%|█ | 3/28 [00:00<00:08, 3.04it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.97it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.93it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.91it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.89it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.88it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.87it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.87it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.87it/s] 50%|█████ | 14/28 [00:04<00:04, 2.87it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s] 61%|██████ | 17/28 [00:05<00:03, 2.87it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.87it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.87it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.87it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.87it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.87it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.87it/s] 93%|█████████▎| 26/28 [00:09<00:00, 2.87it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.87it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s]
Want to make some of these yourself?
Run this model