smaerdlatigid / stable-audio
Create audio clips from text
- Public
- 16 runs
-
L40S
Prediction
smaerdlatigid/stable-audio:80d7a3ff48781aadfe37bd4c0c0317ffa94c67698d661f4792b1b01129a29689ID9f2k5s05gxrgm0cjz47b5ax0ycStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- cfg
- 7
- steps
- 120
- prompt
- A gentle rainfall with distant thunder
- seconds_total
- 60
{ "cfg": 7, "steps": 120, "prompt": "A gentle rainfall with distant thunder", "seconds_total": 60 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run smaerdlatigid/stable-audio using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "smaerdlatigid/stable-audio:80d7a3ff48781aadfe37bd4c0c0317ffa94c67698d661f4792b1b01129a29689", { input: { cfg: 7, steps: 120, prompt: "A gentle rainfall with distant thunder", seconds_total: 60 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run smaerdlatigid/stable-audio using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "smaerdlatigid/stable-audio:80d7a3ff48781aadfe37bd4c0c0317ffa94c67698d661f4792b1b01129a29689", input={ "cfg": 7, "steps": 120, "prompt": "A gentle rainfall with distant thunder", "seconds_total": 60 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run smaerdlatigid/stable-audio using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "smaerdlatigid/stable-audio:80d7a3ff48781aadfe37bd4c0c0317ffa94c67698d661f4792b1b01129a29689", "input": { "cfg": 7, "steps": 120, "prompt": "A gentle rainfall with distant thunder", "seconds_total": 60 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Video Player is loading.Current Time 00:00:000/Duration 00:00:000Loaded: 0%00:00:000Stream Type LIVERemaining Time -00:00:0001x- Chapters
- descriptions off, selected
- captions settings, opens captions settings dialog
- captions off, selected
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{ "completed_at": "2024-11-04T21:23:52.279010Z", "created_at": "2024-11-04T21:21:38.695000Z", "data_removed": false, "error": null, "id": "9f2k5s05gxrgm0cjz47b5ax0yc", "input": { "cfg": 7, "steps": 120, "prompt": "A gentle rainfall with distant thunder", "seconds_total": 60 }, "logs": "Prompt received: A gentle rainfall with distant thunder\nSettings: Duration=60s, Steps=120, CFG Scale=7.0\nSample rate: 44100, Sample size: 2646000\nConditioning: [{'prompt': 'A gentle rainfall with distant thunder', 'seconds_start': 0, 'seconds_total': 60}]\nGenerating audio...\n528137451\n/src/stable_audio_tools/models/conditioners.py:314: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad):\n/src/stable_audio_tools/inference/sampling.py:176: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith torch.cuda.amp.autocast():\n 0%| | 0/120 [00:00<?, ?it/s]/root/.pyenv/versions/3.9.20/lib/python3.9/contextlib.py:87: FutureWarning: `torch.backends.cuda.sdp_kernel()` is deprecated. In the future, this context manager will be removed. Please see `torch.nn.attention.sdpa_kernel()` for the new context manager, with updated signature.\nself.gen = func(*args, **kwds)\n/root/.pyenv/versions/3.9.20/lib/python3.9/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=500.00006103515625 and t1=500.000061.\nwarnings.warn(f\"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.\")\n 1%| | 1/120 [00:00<00:24, 4.81it/s]\n 2%|▏ | 2/120 [00:00<00:17, 6.91it/s]\n 2%|▎ | 3/120 [00:00<00:14, 8.00it/s]\n 3%|▎ | 4/120 [00:00<00:13, 8.67it/s]\n 4%|▍ | 5/120 [00:00<00:12, 9.06it/s]\n 5%|▌ | 6/120 [00:00<00:12, 9.32it/s]\n 6%|▌ | 7/120 [00:00<00:11, 9.51it/s]\n 7%|▋ | 8/120 [00:00<00:11, 9.64it/s]\n 8%|▊ | 9/120 [00:01<00:11, 9.73it/s]\n 8%|▊ | 10/120 [00:01<00:11, 9.79it/s]\n 9%|▉ | 11/120 [00:01<00:11, 9.83it/s]\n 10%|█ | 12/120 [00:01<00:10, 9.84it/s]\n 11%|█ | 13/120 [00:01<00:10, 9.87it/s]\n 12%|█▏ | 14/120 [00:01<00:10, 9.86it/s]\n 12%|█▎ | 15/120 [00:01<00:10, 9.87it/s]\n 13%|█▎ | 16/120 [00:01<00:10, 9.88it/s]\n 14%|█▍ | 17/120 [00:01<00:10, 9.88it/s]\n 15%|█▌ | 18/120 [00:01<00:10, 9.88it/s]\n 16%|█▌ | 19/120 [00:02<00:10, 9.86it/s]\n 17%|█▋ | 20/120 [00:02<00:10, 9.89it/s]\n 18%|█▊ | 21/120 [00:02<00:10, 9.88it/s]\n 18%|█▊ | 22/120 [00:02<00:09, 9.88it/s]\n 19%|█▉ | 23/120 [00:02<00:09, 9.88it/s]\n 20%|██ | 24/120 [00:02<00:09, 9.88it/s]\n 21%|██ | 25/120 [00:02<00:09, 9.88it/s]\n 22%|██▏ | 26/120 [00:02<00:09, 9.87it/s]\n 22%|██▎ | 27/120 [00:02<00:09, 9.87it/s]\n 23%|██▎ | 28/120 [00:02<00:09, 9.88it/s]\n 24%|██▍ | 29/120 [00:03<00:09, 9.88it/s]\n 25%|██▌ | 30/120 [00:03<00:09, 9.87it/s]\n 26%|██▌ | 31/120 [00:03<00:09, 9.87it/s]\n 27%|██▋ | 32/120 [00:03<00:08, 9.85it/s]\n 28%|██▊ | 33/120 [00:03<00:08, 9.87it/s]\n 28%|██▊ | 34/120 [00:03<00:08, 9.85it/s]\n 29%|██▉ | 35/120 [00:03<00:08, 9.85it/s]\n 30%|███ | 36/120 [00:03<00:08, 9.85it/s]\n 31%|███ | 37/120 [00:03<00:08, 9.85it/s]\n 32%|███▏ | 38/120 [00:03<00:08, 9.85it/s]\n 32%|███▎ | 39/120 [00:04<00:08, 9.88it/s]\n 33%|███▎ | 40/120 [00:04<00:08, 9.88it/s]\n 34%|███▍ | 41/120 [00:04<00:08, 9.87it/s]\n 35%|███▌ | 42/120 [00:04<00:07, 9.88it/s]\n 36%|███▌ | 43/120 [00:04<00:07, 9.89it/s]\n 37%|███▋ | 44/120 [00:04<00:07, 9.88it/s]\n 38%|███▊ | 45/120 [00:04<00:07, 9.89it/s]\n 38%|███▊ | 46/120 [00:04<00:07, 9.81it/s]\n 39%|███▉ | 47/120 [00:04<00:07, 9.72it/s]\n 40%|████ | 48/120 [00:04<00:07, 9.73it/s]\n 41%|████ | 49/120 [00:05<00:07, 9.74it/s]\n 42%|████▏ | 50/120 [00:05<00:07, 9.78it/s]\n 42%|████▎ | 51/120 [00:05<00:07, 9.81it/s]\n 43%|████▎ | 52/120 [00:05<00:06, 9.80it/s]\n 44%|████▍ | 53/120 [00:05<00:06, 9.79it/s]\n 45%|████▌ | 54/120 [00:05<00:06, 9.80it/s]\n 46%|████▌ | 55/120 [00:05<00:06, 9.80it/s]\n 47%|████▋ | 56/120 [00:05<00:06, 9.79it/s]\n 48%|████▊ | 57/120 [00:05<00:06, 9.77it/s]\n 48%|████▊ | 58/120 [00:05<00:06, 9.81it/s]\n 49%|████▉ | 59/120 [00:06<00:06, 9.83it/s]\n 50%|█████ | 60/120 [00:06<00:06, 9.86it/s]\n 51%|█████ | 61/120 [00:06<00:05, 9.87it/s]\n 52%|█████▏ | 62/120 [00:06<00:05, 9.78it/s]\n 52%|█████▎ | 63/120 [00:06<00:05, 9.77it/s]\n 53%|█████▎ | 64/120 [00:06<00:05, 9.82it/s]\n 54%|█████▍ | 65/120 [00:06<00:05, 9.84it/s]\n 55%|█████▌ | 66/120 [00:06<00:05, 9.87it/s]\n 56%|█████▌ | 67/120 [00:06<00:05, 9.88it/s]\n 57%|█████▋ | 68/120 [00:07<00:05, 9.90it/s]\n 57%|█████▊ | 69/120 [00:07<00:05, 9.92it/s]\n 58%|█████▊ | 70/120 [00:07<00:05, 9.93it/s]\n 59%|█████▉ | 71/120 [00:07<00:04, 9.92it/s]\n 60%|██████ | 72/120 [00:07<00:04, 9.80it/s]\n 61%|██████ | 73/120 [00:07<00:04, 9.86it/s]\n 62%|██████▏ | 74/120 [00:07<00:04, 9.87it/s]\n 62%|██████▎ | 75/120 [00:07<00:04, 9.90it/s]\n 63%|██████▎ | 76/120 [00:07<00:04, 9.91it/s]\n 64%|██████▍ | 77/120 [00:07<00:04, 9.90it/s]\n 65%|██████▌ | 78/120 [00:08<00:04, 9.93it/s]\n 66%|██████▌ | 79/120 [00:08<00:04, 9.92it/s]\n 67%|██████▋ | 80/120 [00:08<00:04, 9.92it/s]\n 68%|██████▊ | 81/120 [00:08<00:03, 9.91it/s]\n 68%|██████▊ | 82/120 [00:08<00:03, 9.91it/s]\n 69%|██████▉ | 83/120 [00:08<00:03, 9.85it/s]\n 70%|███████ | 84/120 [00:08<00:03, 9.87it/s]\n 71%|███████ | 85/120 [00:08<00:03, 9.89it/s]\n 72%|███████▏ | 86/120 [00:08<00:03, 9.89it/s]\n 72%|███████▎ | 87/120 [00:08<00:03, 9.90it/s]\n 73%|███████▎ | 88/120 [00:09<00:03, 9.91it/s]\n 74%|███████▍ | 89/120 [00:09<00:03, 9.92it/s]\n 75%|███████▌ | 90/120 [00:09<00:03, 9.91it/s]\n 76%|███████▌ | 91/120 [00:09<00:02, 9.92it/s]\n 77%|███████▋ | 92/120 [00:09<00:02, 9.93it/s]\n 78%|███████▊ | 93/120 [00:09<00:02, 9.93it/s]\n 78%|███████▊ | 94/120 [00:09<00:02, 9.93it/s]\n 79%|███████▉ | 95/120 [00:09<00:02, 9.94it/s]\n 80%|████████ | 96/120 [00:09<00:02, 9.95it/s]\n 81%|████████ | 97/120 [00:09<00:02, 9.96it/s]\n 82%|████████▏ | 98/120 [00:10<00:02, 9.96it/s]\n 83%|████████▎ | 100/120 [00:10<00:02, 9.98it/s]\n 84%|████████▍ | 101/120 [00:10<00:01, 9.97it/s]\n 85%|████████▌ | 102/120 [00:10<00:01, 9.97it/s]\n 86%|████████▌ | 103/120 [00:10<00:01, 9.95it/s]\n 87%|████████▋ | 104/120 [00:10<00:01, 9.92it/s]\n 88%|████████▊ | 105/120 [00:10<00:01, 9.92it/s]\n 88%|████████▊ | 106/120 [00:10<00:01, 9.93it/s]\n 89%|████████▉ | 107/120 [00:10<00:01, 9.94it/s]\n 91%|█████████ | 109/120 [00:11<00:01, 9.95it/s]\n 92%|█████████▏| 110/120 [00:11<00:01, 9.95it/s]\n 92%|█████████▎| 111/120 [00:11<00:00, 9.95it/s]\n 93%|█████████▎| 112/120 [00:11<00:00, 9.94it/s]\n 94%|█████████▍| 113/120 [00:11<00:00, 9.93it/s]\n 96%|█████████▌| 115/120 [00:11<00:00, 9.97it/s]\n 98%|█████████▊| 117/120 [00:11<00:00, 9.99it/s]\n 98%|█████████▊| 118/120 [00:12<00:00, 9.99it/s]\n100%|██████████| 120/120 [00:12<00:00, 10.09it/s]\n100%|██████████| 120/120 [00:12<00:00, 9.81it/s]\nAudio generated.\nAudio rearranged.\nAudio normalized and converted.\nSaving audio to file: /tmp/outputs/output_9f0f5406daaf43d88fffc76dc0b62c02.wav\nAudio saved: /tmp/outputs/output_9f0f5406daaf43d88fffc76dc0b62c02.wav\nFailed to upload image: {'statusCode': 400, 'error': 'Duplicate', 'message': 'The resource already exists'}\nFailed to upload metadata: {'statusCode': 400, 'error': 'Duplicate', 'message': 'The resource already exists'}", "metrics": { "predict_time": 17.756070147, "total_time": 133.58401 }, "output": [ "https://replicate.delivery/pbxt/ZylZrdmM7n7dO1ZKrTeH29ndHGTIDI72m9Ba4REgAXPza32JA/output_9f0f5406daaf43d88fffc76dc0b62c02.wav" ], "started_at": "2024-11-04T21:23:34.522940Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/9f2k5s05gxrgm0cjz47b5ax0yc", "cancel": "https://api.replicate.com/v1/predictions/9f2k5s05gxrgm0cjz47b5ax0yc/cancel" }, "version": "80d7a3ff48781aadfe37bd4c0c0317ffa94c67698d661f4792b1b01129a29689" }
Generated inPrompt received: A gentle rainfall with distant thunder Settings: Duration=60s, Steps=120, CFG Scale=7.0 Sample rate: 44100, Sample size: 2646000 Conditioning: [{'prompt': 'A gentle rainfall with distant thunder', 'seconds_start': 0, 'seconds_total': 60}] Generating audio... 528137451 /src/stable_audio_tools/models/conditioners.py:314: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad): /src/stable_audio_tools/inference/sampling.py:176: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with torch.cuda.amp.autocast(): 0%| | 0/120 [00:00<?, ?it/s]/root/.pyenv/versions/3.9.20/lib/python3.9/contextlib.py:87: FutureWarning: `torch.backends.cuda.sdp_kernel()` is deprecated. In the future, this context manager will be removed. Please see `torch.nn.attention.sdpa_kernel()` for the new context manager, with updated signature. self.gen = func(*args, **kwds) /root/.pyenv/versions/3.9.20/lib/python3.9/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=500.00006103515625 and t1=500.000061. warnings.warn(f"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.") 1%| | 1/120 [00:00<00:24, 4.81it/s] 2%|▏ | 2/120 [00:00<00:17, 6.91it/s] 2%|▎ | 3/120 [00:00<00:14, 8.00it/s] 3%|▎ | 4/120 [00:00<00:13, 8.67it/s] 4%|▍ | 5/120 [00:00<00:12, 9.06it/s] 5%|▌ | 6/120 [00:00<00:12, 9.32it/s] 6%|▌ | 7/120 [00:00<00:11, 9.51it/s] 7%|▋ | 8/120 [00:00<00:11, 9.64it/s] 8%|▊ | 9/120 [00:01<00:11, 9.73it/s] 8%|▊ | 10/120 [00:01<00:11, 9.79it/s] 9%|▉ | 11/120 [00:01<00:11, 9.83it/s] 10%|█ | 12/120 [00:01<00:10, 9.84it/s] 11%|█ | 13/120 [00:01<00:10, 9.87it/s] 12%|█▏ | 14/120 [00:01<00:10, 9.86it/s] 12%|█▎ | 15/120 [00:01<00:10, 9.87it/s] 13%|█▎ | 16/120 [00:01<00:10, 9.88it/s] 14%|█▍ | 17/120 [00:01<00:10, 9.88it/s] 15%|█▌ | 18/120 [00:01<00:10, 9.88it/s] 16%|█▌ | 19/120 [00:02<00:10, 9.86it/s] 17%|█▋ | 20/120 [00:02<00:10, 9.89it/s] 18%|█▊ | 21/120 [00:02<00:10, 9.88it/s] 18%|█▊ | 22/120 [00:02<00:09, 9.88it/s] 19%|█▉ | 23/120 [00:02<00:09, 9.88it/s] 20%|██ | 24/120 [00:02<00:09, 9.88it/s] 21%|██ | 25/120 [00:02<00:09, 9.88it/s] 22%|██▏ | 26/120 [00:02<00:09, 9.87it/s] 22%|██▎ | 27/120 [00:02<00:09, 9.87it/s] 23%|██▎ | 28/120 [00:02<00:09, 9.88it/s] 24%|██▍ | 29/120 [00:03<00:09, 9.88it/s] 25%|██▌ | 30/120 [00:03<00:09, 9.87it/s] 26%|██▌ | 31/120 [00:03<00:09, 9.87it/s] 27%|██▋ | 32/120 [00:03<00:08, 9.85it/s] 28%|██▊ | 33/120 [00:03<00:08, 9.87it/s] 28%|██▊ | 34/120 [00:03<00:08, 9.85it/s] 29%|██▉ | 35/120 [00:03<00:08, 9.85it/s] 30%|███ | 36/120 [00:03<00:08, 9.85it/s] 31%|███ | 37/120 [00:03<00:08, 9.85it/s] 32%|███▏ | 38/120 [00:03<00:08, 9.85it/s] 32%|███▎ | 39/120 [00:04<00:08, 9.88it/s] 33%|███▎ | 40/120 [00:04<00:08, 9.88it/s] 34%|███▍ | 41/120 [00:04<00:08, 9.87it/s] 35%|███▌ | 42/120 [00:04<00:07, 9.88it/s] 36%|███▌ | 43/120 [00:04<00:07, 9.89it/s] 37%|███▋ | 44/120 [00:04<00:07, 9.88it/s] 38%|███▊ | 45/120 [00:04<00:07, 9.89it/s] 38%|███▊ | 46/120 [00:04<00:07, 9.81it/s] 39%|███▉ | 47/120 [00:04<00:07, 9.72it/s] 40%|████ | 48/120 [00:04<00:07, 9.73it/s] 41%|████ | 49/120 [00:05<00:07, 9.74it/s] 42%|████▏ | 50/120 [00:05<00:07, 9.78it/s] 42%|████▎ | 51/120 [00:05<00:07, 9.81it/s] 43%|████▎ | 52/120 [00:05<00:06, 9.80it/s] 44%|████▍ | 53/120 [00:05<00:06, 9.79it/s] 45%|████▌ | 54/120 [00:05<00:06, 9.80it/s] 46%|████▌ | 55/120 [00:05<00:06, 9.80it/s] 47%|████▋ | 56/120 [00:05<00:06, 9.79it/s] 48%|████▊ | 57/120 [00:05<00:06, 9.77it/s] 48%|████▊ | 58/120 [00:05<00:06, 9.81it/s] 49%|████▉ | 59/120 [00:06<00:06, 9.83it/s] 50%|█████ | 60/120 [00:06<00:06, 9.86it/s] 51%|█████ | 61/120 [00:06<00:05, 9.87it/s] 52%|█████▏ | 62/120 [00:06<00:05, 9.78it/s] 52%|█████▎ | 63/120 [00:06<00:05, 9.77it/s] 53%|█████▎ | 64/120 [00:06<00:05, 9.82it/s] 54%|█████▍ | 65/120 [00:06<00:05, 9.84it/s] 55%|█████▌ | 66/120 [00:06<00:05, 9.87it/s] 56%|█████▌ | 67/120 [00:06<00:05, 9.88it/s] 57%|█████▋ | 68/120 [00:07<00:05, 9.90it/s] 57%|█████▊ | 69/120 [00:07<00:05, 9.92it/s] 58%|█████▊ | 70/120 [00:07<00:05, 9.93it/s] 59%|█████▉ | 71/120 [00:07<00:04, 9.92it/s] 60%|██████ | 72/120 [00:07<00:04, 9.80it/s] 61%|██████ | 73/120 [00:07<00:04, 9.86it/s] 62%|██████▏ | 74/120 [00:07<00:04, 9.87it/s] 62%|██████▎ | 75/120 [00:07<00:04, 9.90it/s] 63%|██████▎ | 76/120 [00:07<00:04, 9.91it/s] 64%|██████▍ | 77/120 [00:07<00:04, 9.90it/s] 65%|██████▌ | 78/120 [00:08<00:04, 9.93it/s] 66%|██████▌ | 79/120 [00:08<00:04, 9.92it/s] 67%|██████▋ | 80/120 [00:08<00:04, 9.92it/s] 68%|██████▊ | 81/120 [00:08<00:03, 9.91it/s] 68%|██████▊ | 82/120 [00:08<00:03, 9.91it/s] 69%|██████▉ | 83/120 [00:08<00:03, 9.85it/s] 70%|███████ | 84/120 [00:08<00:03, 9.87it/s] 71%|███████ | 85/120 [00:08<00:03, 9.89it/s] 72%|███████▏ | 86/120 [00:08<00:03, 9.89it/s] 72%|███████▎ | 87/120 [00:08<00:03, 9.90it/s] 73%|███████▎ | 88/120 [00:09<00:03, 9.91it/s] 74%|███████▍ | 89/120 [00:09<00:03, 9.92it/s] 75%|███████▌ | 90/120 [00:09<00:03, 9.91it/s] 76%|███████▌ | 91/120 [00:09<00:02, 9.92it/s] 77%|███████▋ | 92/120 [00:09<00:02, 9.93it/s] 78%|███████▊ | 93/120 [00:09<00:02, 9.93it/s] 78%|███████▊ | 94/120 [00:09<00:02, 9.93it/s] 79%|███████▉ | 95/120 [00:09<00:02, 9.94it/s] 80%|████████ | 96/120 [00:09<00:02, 9.95it/s] 81%|████████ | 97/120 [00:09<00:02, 9.96it/s] 82%|████████▏ | 98/120 [00:10<00:02, 9.96it/s] 83%|████████▎ | 100/120 [00:10<00:02, 9.98it/s] 84%|████████▍ | 101/120 [00:10<00:01, 9.97it/s] 85%|████████▌ | 102/120 [00:10<00:01, 9.97it/s] 86%|████████▌ | 103/120 [00:10<00:01, 9.95it/s] 87%|████████▋ | 104/120 [00:10<00:01, 9.92it/s] 88%|████████▊ | 105/120 [00:10<00:01, 9.92it/s] 88%|████████▊ | 106/120 [00:10<00:01, 9.93it/s] 89%|████████▉ | 107/120 [00:10<00:01, 9.94it/s] 91%|█████████ | 109/120 [00:11<00:01, 9.95it/s] 92%|█████████▏| 110/120 [00:11<00:01, 9.95it/s] 92%|█████████▎| 111/120 [00:11<00:00, 9.95it/s] 93%|█████████▎| 112/120 [00:11<00:00, 9.94it/s] 94%|█████████▍| 113/120 [00:11<00:00, 9.93it/s] 96%|█████████▌| 115/120 [00:11<00:00, 9.97it/s] 98%|█████████▊| 117/120 [00:11<00:00, 9.99it/s] 98%|█████████▊| 118/120 [00:12<00:00, 9.99it/s] 100%|██████████| 120/120 [00:12<00:00, 10.09it/s] 100%|██████████| 120/120 [00:12<00:00, 9.81it/s] Audio generated. Audio rearranged. Audio normalized and converted. Saving audio to file: /tmp/outputs/output_9f0f5406daaf43d88fffc76dc0b62c02.wav Audio saved: /tmp/outputs/output_9f0f5406daaf43d88fffc76dc0b62c02.wav Failed to upload image: {'statusCode': 400, 'error': 'Duplicate', 'message': 'The resource already exists'} Failed to upload metadata: {'statusCode': 400, 'error': 'Duplicate', 'message': 'The resource already exists'}
Want to make some of these yourself?
Run this model