smoretalk
/
moltex
- Public
- 365 runs
Run smoretalk/moltex with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
pattern
|
Specify things that you want to put in the output
|
negative_prompt |
string
|
<fast_neg>, <deep_neg>
|
Specify things that you don't want to put in the output
|
num_outputs |
integer
|
4
Min: 1 Max: 4 |
Number of images to output.
|
num_inference_steps |
integer
|
30
Min: 1 Max: 100 |
Number of denoising steps
|
guidance_scale |
number
|
7.5
Min: 1 Max: 20 |
Scale for classifier-free guidance
|
width |
integer
|
512
Max: 1024 |
Width
|
height |
integer
|
512
Max: 1024 |
Height
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
|
style |
string
(enum)
|
General
Options: Technical, Leather, Parametric, Nature, General |
Option for style
|
style_strength |
number
|
0.95
Max: 2 |
Scale for strength of LoRA
|
rank |
integer
(enum)
|
64
Options: 64, 32, 16 |
Dimension of the LoRA update matrices
|
sharpen |
boolean
|
False
|
Sharpen image
|
radius |
integer
|
1
Min: 1 Max: 15 |
Radius of the sharpening kernel
|
alpha |
number
|
1
Max: 5 |
Strength of the sharpening kernel
|
{
"type": "object",
"title": "Input",
"properties": {
"rank": {
"enum": [
64,
32,
16
],
"type": "integer",
"title": "rank",
"description": "Dimension of the LoRA update matrices",
"default": 64,
"x-order": 10
},
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 7,
"description": "Random seed. Leave blank to randomize the seed"
},
"alpha": {
"type": "number",
"title": "Alpha",
"default": 1,
"maximum": 5,
"minimum": 0,
"x-order": 13,
"description": "Strength of the sharpening kernel"
},
"style": {
"enum": [
"Technical",
"Leather",
"Parametric",
"Nature",
"General"
],
"type": "string",
"title": "style",
"description": "Option for style",
"default": "General",
"x-order": 8
},
"width": {
"type": "integer",
"title": "Width",
"default": 512,
"maximum": 1024,
"minimum": 0,
"x-order": 5,
"description": "Width"
},
"height": {
"type": "integer",
"title": "Height",
"default": 512,
"maximum": 1024,
"minimum": 0,
"x-order": 6,
"description": "Height"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "pattern",
"x-order": 0,
"description": "Specify things that you want to put in the output"
},
"radius": {
"type": "integer",
"title": "Radius",
"default": 1,
"maximum": 15,
"minimum": 1,
"x-order": 12,
"description": "Radius of the sharpening kernel"
},
"sharpen": {
"type": "boolean",
"title": "Sharpen",
"default": false,
"x-order": 11,
"description": "Sharpen image"
},
"num_outputs": {
"type": "integer",
"title": "Num Outputs",
"default": 4,
"maximum": 4,
"minimum": 1,
"x-order": 2,
"description": "Number of images to output."
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 7.5,
"maximum": 20,
"minimum": 1,
"x-order": 4,
"description": "Scale for classifier-free guidance"
},
"style_strength": {
"type": "number",
"title": "Style Strength",
"default": 0.95,
"maximum": 2,
"minimum": 0,
"x-order": 9,
"description": "Scale for strength of LoRA"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"default": "<fast_neg>, <deep_neg>",
"x-order": 1,
"description": "Specify things that you don't want to put in the output"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 30,
"maximum": 100,
"minimum": 1,
"x-order": 3,
"description": "Number of denoising steps"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}