sofoo1992
/
sd21
- Public
- 57 runs
-
L40S
Prediction
sofoo1992/sd21:e25260cca5b12dc291f9a0244e37876bc4f9dafab2c99af131967b6c886e85e9IDddmszbdbw6lzyof27prmrqovsaStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- seed
- 8899
- width
- 768
- height
- 768
- prompt
- a photo of an astronaut riding a horse on mars
- scheduler
- DPMSolverMultistep
- num_outputs
- 1
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "seed": 8899, "width": 768, "height": 768, "prompt": "a photo of an astronaut riding a horse on mars", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sofoo1992/sd21 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sofoo1992/sd21:e25260cca5b12dc291f9a0244e37876bc4f9dafab2c99af131967b6c886e85e9", { input: { seed: 8899, width: 768, height: 768, prompt: "a photo of an astronaut riding a horse on mars", scheduler: "DPMSolverMultistep", num_outputs: 1, guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sofoo1992/sd21 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sofoo1992/sd21:e25260cca5b12dc291f9a0244e37876bc4f9dafab2c99af131967b6c886e85e9", input={ "seed": 8899, "width": 768, "height": 768, "prompt": "a photo of an astronaut riding a horse on mars", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sofoo1992/sd21 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e25260cca5b12dc291f9a0244e37876bc4f9dafab2c99af131967b6c886e85e9", "input": { "seed": 8899, "width": 768, "height": 768, "prompt": "a photo of an astronaut riding a horse on mars", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-07T09:16:37.757410Z", "created_at": "2023-09-07T09:13:08.005340Z", "data_removed": false, "error": null, "id": "ddmszbdbw6lzyof27prmrqovsa", "input": { "seed": 8899, "width": 768, "height": 768, "prompt": "a photo of an astronaut riding a horse on mars", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Using seed: 8899\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:38, 1.27it/s]\n 4%|▍ | 2/50 [00:01<00:25, 1.85it/s]\n 6%|▌ | 3/50 [00:01<00:21, 2.17it/s]\n 8%|▊ | 4/50 [00:01<00:19, 2.36it/s]\n 10%|█ | 5/50 [00:02<00:18, 2.47it/s]\n 12%|█▏ | 6/50 [00:02<00:17, 2.55it/s]\n 14%|█▍ | 7/50 [00:02<00:16, 2.60it/s]\n 16%|█▌ | 8/50 [00:03<00:15, 2.64it/s]\n 18%|█▊ | 9/50 [00:03<00:15, 2.66it/s]\n 20%|██ | 10/50 [00:04<00:14, 2.68it/s]\n 22%|██▏ | 11/50 [00:04<00:14, 2.69it/s]\n 24%|██▍ | 12/50 [00:04<00:14, 2.70it/s]\n 26%|██▌ | 13/50 [00:05<00:13, 2.70it/s]\n 28%|██▊ | 14/50 [00:05<00:13, 2.70it/s]\n 30%|███ | 15/50 [00:05<00:12, 2.71it/s]\n 32%|███▏ | 16/50 [00:06<00:12, 2.71it/s]\n 34%|███▍ | 17/50 [00:06<00:12, 2.71it/s]\n 36%|███▌ | 18/50 [00:07<00:11, 2.71it/s]\n 38%|███▊ | 19/50 [00:07<00:11, 2.71it/s]\n 40%|████ | 20/50 [00:07<00:11, 2.71it/s]\n 42%|████▏ | 21/50 [00:08<00:10, 2.71it/s]\n 44%|████▍ | 22/50 [00:08<00:10, 2.71it/s]\n 46%|████▌ | 23/50 [00:08<00:09, 2.71it/s]\n 48%|████▊ | 24/50 [00:09<00:09, 2.71it/s]\n 50%|█████ | 25/50 [00:09<00:09, 2.71it/s]\n 52%|█████▏ | 26/50 [00:10<00:08, 2.71it/s]\n 54%|█████▍ | 27/50 [00:10<00:08, 2.71it/s]\n 56%|█████▌ | 28/50 [00:10<00:08, 2.70it/s]\n 58%|█████▊ | 29/50 [00:11<00:07, 2.70it/s]\n 60%|██████ | 30/50 [00:11<00:07, 2.70it/s]\n 62%|██████▏ | 31/50 [00:11<00:07, 2.70it/s]\n 64%|██████▍ | 32/50 [00:12<00:06, 2.70it/s]\n 66%|██████▌ | 33/50 [00:12<00:06, 2.70it/s]\n 68%|██████▊ | 34/50 [00:12<00:05, 2.70it/s]\n 70%|███████ | 35/50 [00:13<00:05, 2.70it/s]\n 72%|███████▏ | 36/50 [00:13<00:05, 2.70it/s]\n 74%|███████▍ | 37/50 [00:14<00:04, 2.70it/s]\n 76%|███████▌ | 38/50 [00:14<00:04, 2.70it/s]\n 78%|███████▊ | 39/50 [00:14<00:04, 2.70it/s]\n 80%|████████ | 40/50 [00:15<00:03, 2.70it/s]\n 82%|████████▏ | 41/50 [00:15<00:03, 2.70it/s]\n 84%|████████▍ | 42/50 [00:15<00:02, 2.70it/s]\n 86%|████████▌ | 43/50 [00:16<00:02, 2.70it/s]\n 88%|████████▊ | 44/50 [00:16<00:02, 2.70it/s]\n 90%|█████████ | 45/50 [00:17<00:01, 2.70it/s]\n 92%|█████████▏| 46/50 [00:17<00:01, 2.70it/s]\n 94%|█████████▍| 47/50 [00:17<00:01, 2.70it/s]\n 96%|█████████▌| 48/50 [00:18<00:00, 2.70it/s]\n 98%|█████████▊| 49/50 [00:18<00:00, 2.70it/s]\n100%|██████████| 50/50 [00:18<00:00, 2.70it/s]\n100%|██████████| 50/50 [00:18<00:00, 2.65it/s]", "metrics": { "predict_time": 20.909629, "total_time": 209.75207 }, "output": [ "https://replicate.delivery/pbxt/TY6uSkQhBfXsYKRcf63weI28CQHejgW9x06RsMVRpnXQvRHGB/out-0.png" ], "started_at": "2023-09-07T09:16:16.847781Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ddmszbdbw6lzyof27prmrqovsa", "cancel": "https://api.replicate.com/v1/predictions/ddmszbdbw6lzyof27prmrqovsa/cancel" }, "version": "e25260cca5b12dc291f9a0244e37876bc4f9dafab2c99af131967b6c886e85e9" }
Generated inUsing seed: 8899 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:38, 1.27it/s] 4%|▍ | 2/50 [00:01<00:25, 1.85it/s] 6%|▌ | 3/50 [00:01<00:21, 2.17it/s] 8%|▊ | 4/50 [00:01<00:19, 2.36it/s] 10%|█ | 5/50 [00:02<00:18, 2.47it/s] 12%|█▏ | 6/50 [00:02<00:17, 2.55it/s] 14%|█▍ | 7/50 [00:02<00:16, 2.60it/s] 16%|█▌ | 8/50 [00:03<00:15, 2.64it/s] 18%|█▊ | 9/50 [00:03<00:15, 2.66it/s] 20%|██ | 10/50 [00:04<00:14, 2.68it/s] 22%|██▏ | 11/50 [00:04<00:14, 2.69it/s] 24%|██▍ | 12/50 [00:04<00:14, 2.70it/s] 26%|██▌ | 13/50 [00:05<00:13, 2.70it/s] 28%|██▊ | 14/50 [00:05<00:13, 2.70it/s] 30%|███ | 15/50 [00:05<00:12, 2.71it/s] 32%|███▏ | 16/50 [00:06<00:12, 2.71it/s] 34%|███▍ | 17/50 [00:06<00:12, 2.71it/s] 36%|███▌ | 18/50 [00:07<00:11, 2.71it/s] 38%|███▊ | 19/50 [00:07<00:11, 2.71it/s] 40%|████ | 20/50 [00:07<00:11, 2.71it/s] 42%|████▏ | 21/50 [00:08<00:10, 2.71it/s] 44%|████▍ | 22/50 [00:08<00:10, 2.71it/s] 46%|████▌ | 23/50 [00:08<00:09, 2.71it/s] 48%|████▊ | 24/50 [00:09<00:09, 2.71it/s] 50%|█████ | 25/50 [00:09<00:09, 2.71it/s] 52%|█████▏ | 26/50 [00:10<00:08, 2.71it/s] 54%|█████▍ | 27/50 [00:10<00:08, 2.71it/s] 56%|█████▌ | 28/50 [00:10<00:08, 2.70it/s] 58%|█████▊ | 29/50 [00:11<00:07, 2.70it/s] 60%|██████ | 30/50 [00:11<00:07, 2.70it/s] 62%|██████▏ | 31/50 [00:11<00:07, 2.70it/s] 64%|██████▍ | 32/50 [00:12<00:06, 2.70it/s] 66%|██████▌ | 33/50 [00:12<00:06, 2.70it/s] 68%|██████▊ | 34/50 [00:12<00:05, 2.70it/s] 70%|███████ | 35/50 [00:13<00:05, 2.70it/s] 72%|███████▏ | 36/50 [00:13<00:05, 2.70it/s] 74%|███████▍ | 37/50 [00:14<00:04, 2.70it/s] 76%|███████▌ | 38/50 [00:14<00:04, 2.70it/s] 78%|███████▊ | 39/50 [00:14<00:04, 2.70it/s] 80%|████████ | 40/50 [00:15<00:03, 2.70it/s] 82%|████████▏ | 41/50 [00:15<00:03, 2.70it/s] 84%|████████▍ | 42/50 [00:15<00:02, 2.70it/s] 86%|████████▌ | 43/50 [00:16<00:02, 2.70it/s] 88%|████████▊ | 44/50 [00:16<00:02, 2.70it/s] 90%|█████████ | 45/50 [00:17<00:01, 2.70it/s] 92%|█████████▏| 46/50 [00:17<00:01, 2.70it/s] 94%|█████████▍| 47/50 [00:17<00:01, 2.70it/s] 96%|█████████▌| 48/50 [00:18<00:00, 2.70it/s] 98%|█████████▊| 49/50 [00:18<00:00, 2.70it/s] 100%|██████████| 50/50 [00:18<00:00, 2.70it/s] 100%|██████████| 50/50 [00:18<00:00, 2.65it/s]
Want to make some of these yourself?
Run this model