Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run spider333/dadka using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"spider333/dadka:868ac956b21fe199e6ffa515bdbc12f7493c0bb6ee78d6ebb3c1f53f9970ab86",
{
input: {
model: "dev",
prompt: "artsy picture of ginger HOTCHIC with big boobs holding painting brush, wearing painting suite, being dirty from colors, with pink, camp splashy background , vivid colours High definition ",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "4:5",
output_format: "png",
guidance_scale: 3,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 32
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run spider333/dadka using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"spider333/dadka:868ac956b21fe199e6ffa515bdbc12f7493c0bb6ee78d6ebb3c1f53f9970ab86",
input={
"model": "dev",
"prompt": "artsy picture of ginger HOTCHIC with big boobs holding painting brush, wearing painting suite, being dirty from colors, with pink, camp splashy background , vivid colours High definition ",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "4:5",
"output_format": "png",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 32
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run spider333/dadka using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "spider333/dadka:868ac956b21fe199e6ffa515bdbc12f7493c0bb6ee78d6ebb3c1f53f9970ab86",
"input": {
"model": "dev",
"prompt": "artsy picture of ginger HOTCHIC with big boobs holding painting brush, wearing painting suite, being dirty from colors, with pink, camp splashy background , vivid colours High definition ",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "4:5",
"output_format": "png",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 32
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-01-29T07:47:26.548070Z",
"created_at": "2025-01-29T07:46:42.126000Z",
"data_removed": false,
"error": null,
"id": "2kycsnek9srmc0cmp439xy7g7r",
"input": {
"model": "dev",
"prompt": "artsy picture of ginger HOTCHIC with big boobs holding painting brush, wearing painting suite, being dirty from colors, with pink, camp splashy background , vivid colours High definition ",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "4:5",
"output_format": "png",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 32
},
"logs": "2025-01-29 07:46:51.070 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-29 07:46:51.071 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2876.84it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2793.43it/s]\n2025-01-29 07:46:51.180 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\nfree=29055690444800\nDownloading weights\n2025-01-29T07:46:51Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpyvnf27q9/weights url=https://replicate.delivery/xezq/kzhfD4NVecvxGkEfZNqfYfO22j9pQvh2tnIB3K61tfIysHeEKA/trained_model.tar\n2025-01-29T07:46:57Z | INFO | [ Complete ] dest=/tmp/tmpyvnf27q9/weights size=\"258 MB\" total_elapsed=6.498s url=https://replicate.delivery/xezq/kzhfD4NVecvxGkEfZNqfYfO22j9pQvh2tnIB3K61tfIysHeEKA/trained_model.tar\nDownloaded weights in 6.52s\n2025-01-29 07:46:57.706 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/22c481f1bc1d7f9a\n2025-01-29 07:46:57.791 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-29 07:46:57.791 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-29 07:46:57.792 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2868.08it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2785.36it/s]\n2025-01-29 07:46:57.901 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s\nUsing seed: 14940\n0it [00:00, ?it/s]\n1it [00:00, 9.16it/s]\n2it [00:00, 6.43it/s]\n3it [00:00, 5.86it/s]\n4it [00:00, 5.63it/s]\n5it [00:00, 5.48it/s]\n6it [00:01, 5.34it/s]\n7it [00:01, 5.29it/s]\n8it [00:01, 5.29it/s]\n9it [00:01, 5.29it/s]\n10it [00:01, 5.29it/s]\n11it [00:02, 5.29it/s]\n12it [00:02, 5.29it/s]\n13it [00:02, 5.28it/s]\n14it [00:02, 5.29it/s]\n15it [00:02, 5.29it/s]\n16it [00:02, 5.27it/s]\n17it [00:03, 5.26it/s]\n18it [00:03, 5.24it/s]\n19it [00:03, 5.26it/s]\n20it [00:03, 5.25it/s]\n21it [00:03, 5.26it/s]\n22it [00:04, 5.27it/s]\n23it [00:04, 5.24it/s]\n24it [00:04, 5.25it/s]\n25it [00:04, 5.25it/s]\n26it [00:04, 5.24it/s]\n27it [00:05, 5.23it/s]\n28it [00:05, 5.22it/s]\n29it [00:05, 5.22it/s]\n30it [00:05, 5.24it/s]\n31it [00:05, 5.26it/s]\n32it [00:06, 5.27it/s]\n32it [00:06, 5.33it/s]\n0it [00:00, ?it/s]\n1it [00:00, 5.31it/s]\n2it [00:00, 5.24it/s]\n3it [00:00, 5.26it/s]\n4it [00:00, 5.25it/s]\n5it [00:00, 5.22it/s]\n6it [00:01, 5.22it/s]\n7it [00:01, 5.22it/s]\n8it [00:01, 5.21it/s]\n9it [00:01, 5.23it/s]\n10it [00:01, 5.22it/s]\n11it [00:02, 5.23it/s]\n12it [00:02, 5.23it/s]\n13it [00:02, 5.24it/s]\n14it [00:02, 5.23it/s]\n15it [00:02, 5.23it/s]\n16it [00:03, 5.24it/s]\n17it [00:03, 5.22it/s]\n18it [00:03, 5.24it/s]\n19it [00:03, 5.23it/s]\n20it [00:03, 5.23it/s]\n21it [00:04, 5.24it/s]\n22it [00:04, 5.22it/s]\n23it [00:04, 5.19it/s]\n24it [00:04, 5.21it/s]\n25it [00:04, 5.23it/s]\n26it [00:04, 5.25it/s]\n27it [00:05, 5.26it/s]\n28it [00:05, 5.23it/s]\n29it [00:05, 5.21it/s]\n30it [00:05, 5.23it/s]\n31it [00:05, 5.24it/s]\n32it [00:06, 5.25it/s]\n32it [00:06, 5.23it/s]\n0it [00:00, ?it/s]\n1it [00:00, 5.21it/s]\n2it [00:00, 5.18it/s]\n3it [00:00, 5.22it/s]\n4it [00:00, 5.23it/s]\n5it [00:00, 5.24it/s]\n6it [00:01, 5.22it/s]\n7it [00:01, 5.20it/s]\n8it [00:01, 5.19it/s]\n9it [00:01, 5.20it/s]\n10it [00:01, 5.22it/s]\n11it [00:02, 5.22it/s]\n12it [00:02, 5.24it/s]\n13it [00:02, 5.24it/s]\n14it [00:02, 5.23it/s]\n15it [00:02, 5.23it/s]\n16it [00:03, 5.23it/s]\n17it [00:03, 5.20it/s]\n18it [00:03, 5.23it/s]\n19it [00:03, 5.21it/s]\n20it [00:03, 5.23it/s]\n21it [00:04, 5.22it/s]\n22it [00:04, 5.22it/s]\n23it [00:04, 5.21it/s]\n24it [00:04, 5.20it/s]\n25it [00:04, 5.20it/s]\n26it [00:04, 5.23it/s]\n27it [00:05, 5.24it/s]\n28it [00:05, 5.24it/s]\n29it [00:05, 5.22it/s]\n30it [00:05, 5.20it/s]\n31it [00:05, 5.20it/s]\n32it [00:06, 5.20it/s]\n32it [00:06, 5.22it/s]\n0it [00:00, ?it/s]\n1it [00:00, 5.29it/s]\n2it [00:00, 5.24it/s]\n3it [00:00, 5.26it/s]\n4it [00:00, 5.26it/s]\n5it [00:00, 5.23it/s]\n6it [00:01, 5.21it/s]\n7it [00:01, 5.21it/s]\n8it [00:01, 5.19it/s]\n9it [00:01, 5.19it/s]\n10it [00:01, 5.19it/s]\n11it [00:02, 5.21it/s]\n12it [00:02, 5.23it/s]\n13it [00:02, 5.24it/s]\n14it [00:02, 5.22it/s]\n15it [00:02, 5.22it/s]\n16it [00:03, 5.23it/s]\n17it [00:03, 5.24it/s]\n18it [00:03, 5.22it/s]\n19it [00:03, 5.19it/s]\n20it [00:03, 5.21it/s]\n21it [00:04, 5.20it/s]\n22it [00:04, 5.20it/s]\n23it [00:04, 5.19it/s]\n24it [00:04, 5.20it/s]\n25it [00:04, 5.21it/s]\n26it [00:04, 5.23it/s]\n27it [00:05, 5.24it/s]\n28it [00:05, 5.24it/s]\n29it [00:05, 5.21it/s]\n30it [00:05, 5.20it/s]\n31it [00:05, 5.18it/s]\n32it [00:06, 5.18it/s]\n32it [00:06, 5.21it/s]\nTotal safe images: 4 out of 4",
"metrics": {
"predict_time": 35.476348015,
"total_time": 44.42207
},
"output": [
"https://replicate.delivery/xezq/s1mDeUef7fjeSmIB4AGcp4RVnl6hiNil9nq7vp2AEh30hHPhC/out-0.png",
"https://replicate.delivery/xezq/vIfCeOiLJCqXpEtF9CaQfQypVDmIbV7K6Yjzao9LWucd4xToA/out-1.png",
"https://replicate.delivery/xezq/PGSp0fNokd0THaeDw8kXuucNY4FCcvMowZHIYB8gRTjO84JUA/out-2.png",
"https://replicate.delivery/xezq/wS2vyxpfJB1ffIWSX5inU7wRA6WPSj7JfdGLQLdC0XJ7wjnQB/out-3.png"
],
"started_at": "2025-01-29T07:46:51.071722Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bsvm-zhrecl6n4lsyyjmqvnh32q2k6y5spl6sg4cxad46kfnohiickhwa",
"get": "https://api.replicate.com/v1/predictions/2kycsnek9srmc0cmp439xy7g7r",
"cancel": "https://api.replicate.com/v1/predictions/2kycsnek9srmc0cmp439xy7g7r/cancel"
},
"version": "868ac956b21fe199e6ffa515bdbc12f7493c0bb6ee78d6ebb3c1f53f9970ab86"
}
2025-01-29 07:46:51.070 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-29 07:46:51.071 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2876.84it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2793.43it/s]
2025-01-29 07:46:51.180 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
free=29055690444800
Downloading weights
2025-01-29T07:46:51Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpyvnf27q9/weights url=https://replicate.delivery/xezq/kzhfD4NVecvxGkEfZNqfYfO22j9pQvh2tnIB3K61tfIysHeEKA/trained_model.tar
2025-01-29T07:46:57Z | INFO | [ Complete ] dest=/tmp/tmpyvnf27q9/weights size="258 MB" total_elapsed=6.498s url=https://replicate.delivery/xezq/kzhfD4NVecvxGkEfZNqfYfO22j9pQvh2tnIB3K61tfIysHeEKA/trained_model.tar
Downloaded weights in 6.52s
2025-01-29 07:46:57.706 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/22c481f1bc1d7f9a
2025-01-29 07:46:57.791 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-29 07:46:57.791 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-29 07:46:57.792 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2868.08it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2785.36it/s]
2025-01-29 07:46:57.901 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s
Using seed: 14940
0it [00:00, ?it/s]
1it [00:00, 9.16it/s]
2it [00:00, 6.43it/s]
3it [00:00, 5.86it/s]
4it [00:00, 5.63it/s]
5it [00:00, 5.48it/s]
6it [00:01, 5.34it/s]
7it [00:01, 5.29it/s]
8it [00:01, 5.29it/s]
9it [00:01, 5.29it/s]
10it [00:01, 5.29it/s]
11it [00:02, 5.29it/s]
12it [00:02, 5.29it/s]
13it [00:02, 5.28it/s]
14it [00:02, 5.29it/s]
15it [00:02, 5.29it/s]
16it [00:02, 5.27it/s]
17it [00:03, 5.26it/s]
18it [00:03, 5.24it/s]
19it [00:03, 5.26it/s]
20it [00:03, 5.25it/s]
21it [00:03, 5.26it/s]
22it [00:04, 5.27it/s]
23it [00:04, 5.24it/s]
24it [00:04, 5.25it/s]
25it [00:04, 5.25it/s]
26it [00:04, 5.24it/s]
27it [00:05, 5.23it/s]
28it [00:05, 5.22it/s]
29it [00:05, 5.22it/s]
30it [00:05, 5.24it/s]
31it [00:05, 5.26it/s]
32it [00:06, 5.27it/s]
32it [00:06, 5.33it/s]
0it [00:00, ?it/s]
1it [00:00, 5.31it/s]
2it [00:00, 5.24it/s]
3it [00:00, 5.26it/s]
4it [00:00, 5.25it/s]
5it [00:00, 5.22it/s]
6it [00:01, 5.22it/s]
7it [00:01, 5.22it/s]
8it [00:01, 5.21it/s]
9it [00:01, 5.23it/s]
10it [00:01, 5.22it/s]
11it [00:02, 5.23it/s]
12it [00:02, 5.23it/s]
13it [00:02, 5.24it/s]
14it [00:02, 5.23it/s]
15it [00:02, 5.23it/s]
16it [00:03, 5.24it/s]
17it [00:03, 5.22it/s]
18it [00:03, 5.24it/s]
19it [00:03, 5.23it/s]
20it [00:03, 5.23it/s]
21it [00:04, 5.24it/s]
22it [00:04, 5.22it/s]
23it [00:04, 5.19it/s]
24it [00:04, 5.21it/s]
25it [00:04, 5.23it/s]
26it [00:04, 5.25it/s]
27it [00:05, 5.26it/s]
28it [00:05, 5.23it/s]
29it [00:05, 5.21it/s]
30it [00:05, 5.23it/s]
31it [00:05, 5.24it/s]
32it [00:06, 5.25it/s]
32it [00:06, 5.23it/s]
0it [00:00, ?it/s]
1it [00:00, 5.21it/s]
2it [00:00, 5.18it/s]
3it [00:00, 5.22it/s]
4it [00:00, 5.23it/s]
5it [00:00, 5.24it/s]
6it [00:01, 5.22it/s]
7it [00:01, 5.20it/s]
8it [00:01, 5.19it/s]
9it [00:01, 5.20it/s]
10it [00:01, 5.22it/s]
11it [00:02, 5.22it/s]
12it [00:02, 5.24it/s]
13it [00:02, 5.24it/s]
14it [00:02, 5.23it/s]
15it [00:02, 5.23it/s]
16it [00:03, 5.23it/s]
17it [00:03, 5.20it/s]
18it [00:03, 5.23it/s]
19it [00:03, 5.21it/s]
20it [00:03, 5.23it/s]
21it [00:04, 5.22it/s]
22it [00:04, 5.22it/s]
23it [00:04, 5.21it/s]
24it [00:04, 5.20it/s]
25it [00:04, 5.20it/s]
26it [00:04, 5.23it/s]
27it [00:05, 5.24it/s]
28it [00:05, 5.24it/s]
29it [00:05, 5.22it/s]
30it [00:05, 5.20it/s]
31it [00:05, 5.20it/s]
32it [00:06, 5.20it/s]
32it [00:06, 5.22it/s]
0it [00:00, ?it/s]
1it [00:00, 5.29it/s]
2it [00:00, 5.24it/s]
3it [00:00, 5.26it/s]
4it [00:00, 5.26it/s]
5it [00:00, 5.23it/s]
6it [00:01, 5.21it/s]
7it [00:01, 5.21it/s]
8it [00:01, 5.19it/s]
9it [00:01, 5.19it/s]
10it [00:01, 5.19it/s]
11it [00:02, 5.21it/s]
12it [00:02, 5.23it/s]
13it [00:02, 5.24it/s]
14it [00:02, 5.22it/s]
15it [00:02, 5.22it/s]
16it [00:03, 5.23it/s]
17it [00:03, 5.24it/s]
18it [00:03, 5.22it/s]
19it [00:03, 5.19it/s]
20it [00:03, 5.21it/s]
21it [00:04, 5.20it/s]
22it [00:04, 5.20it/s]
23it [00:04, 5.19it/s]
24it [00:04, 5.20it/s]
25it [00:04, 5.21it/s]
26it [00:04, 5.23it/s]
27it [00:05, 5.24it/s]
28it [00:05, 5.24it/s]
29it [00:05, 5.21it/s]
30it [00:05, 5.20it/s]
31it [00:05, 5.18it/s]
32it [00:06, 5.18it/s]
32it [00:06, 5.21it/s]
Total safe images: 4 out of 4
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
2025-01-29 07:46:51.070 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-29 07:46:51.071 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2876.84it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2793.43it/s]
2025-01-29 07:46:51.180 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
free=29055690444800
Downloading weights
2025-01-29T07:46:51Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpyvnf27q9/weights url=https://replicate.delivery/xezq/kzhfD4NVecvxGkEfZNqfYfO22j9pQvh2tnIB3K61tfIysHeEKA/trained_model.tar
2025-01-29T07:46:57Z | INFO | [ Complete ] dest=/tmp/tmpyvnf27q9/weights size="258 MB" total_elapsed=6.498s url=https://replicate.delivery/xezq/kzhfD4NVecvxGkEfZNqfYfO22j9pQvh2tnIB3K61tfIysHeEKA/trained_model.tar
Downloaded weights in 6.52s
2025-01-29 07:46:57.706 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/22c481f1bc1d7f9a
2025-01-29 07:46:57.791 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-29 07:46:57.791 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-29 07:46:57.792 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2868.08it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2785.36it/s]
2025-01-29 07:46:57.901 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s
Using seed: 14940
0it [00:00, ?it/s]
1it [00:00, 9.16it/s]
2it [00:00, 6.43it/s]
3it [00:00, 5.86it/s]
4it [00:00, 5.63it/s]
5it [00:00, 5.48it/s]
6it [00:01, 5.34it/s]
7it [00:01, 5.29it/s]
8it [00:01, 5.29it/s]
9it [00:01, 5.29it/s]
10it [00:01, 5.29it/s]
11it [00:02, 5.29it/s]
12it [00:02, 5.29it/s]
13it [00:02, 5.28it/s]
14it [00:02, 5.29it/s]
15it [00:02, 5.29it/s]
16it [00:02, 5.27it/s]
17it [00:03, 5.26it/s]
18it [00:03, 5.24it/s]
19it [00:03, 5.26it/s]
20it [00:03, 5.25it/s]
21it [00:03, 5.26it/s]
22it [00:04, 5.27it/s]
23it [00:04, 5.24it/s]
24it [00:04, 5.25it/s]
25it [00:04, 5.25it/s]
26it [00:04, 5.24it/s]
27it [00:05, 5.23it/s]
28it [00:05, 5.22it/s]
29it [00:05, 5.22it/s]
30it [00:05, 5.24it/s]
31it [00:05, 5.26it/s]
32it [00:06, 5.27it/s]
32it [00:06, 5.33it/s]
0it [00:00, ?it/s]
1it [00:00, 5.31it/s]
2it [00:00, 5.24it/s]
3it [00:00, 5.26it/s]
4it [00:00, 5.25it/s]
5it [00:00, 5.22it/s]
6it [00:01, 5.22it/s]
7it [00:01, 5.22it/s]
8it [00:01, 5.21it/s]
9it [00:01, 5.23it/s]
10it [00:01, 5.22it/s]
11it [00:02, 5.23it/s]
12it [00:02, 5.23it/s]
13it [00:02, 5.24it/s]
14it [00:02, 5.23it/s]
15it [00:02, 5.23it/s]
16it [00:03, 5.24it/s]
17it [00:03, 5.22it/s]
18it [00:03, 5.24it/s]
19it [00:03, 5.23it/s]
20it [00:03, 5.23it/s]
21it [00:04, 5.24it/s]
22it [00:04, 5.22it/s]
23it [00:04, 5.19it/s]
24it [00:04, 5.21it/s]
25it [00:04, 5.23it/s]
26it [00:04, 5.25it/s]
27it [00:05, 5.26it/s]
28it [00:05, 5.23it/s]
29it [00:05, 5.21it/s]
30it [00:05, 5.23it/s]
31it [00:05, 5.24it/s]
32it [00:06, 5.25it/s]
32it [00:06, 5.23it/s]
0it [00:00, ?it/s]
1it [00:00, 5.21it/s]
2it [00:00, 5.18it/s]
3it [00:00, 5.22it/s]
4it [00:00, 5.23it/s]
5it [00:00, 5.24it/s]
6it [00:01, 5.22it/s]
7it [00:01, 5.20it/s]
8it [00:01, 5.19it/s]
9it [00:01, 5.20it/s]
10it [00:01, 5.22it/s]
11it [00:02, 5.22it/s]
12it [00:02, 5.24it/s]
13it [00:02, 5.24it/s]
14it [00:02, 5.23it/s]
15it [00:02, 5.23it/s]
16it [00:03, 5.23it/s]
17it [00:03, 5.20it/s]
18it [00:03, 5.23it/s]
19it [00:03, 5.21it/s]
20it [00:03, 5.23it/s]
21it [00:04, 5.22it/s]
22it [00:04, 5.22it/s]
23it [00:04, 5.21it/s]
24it [00:04, 5.20it/s]
25it [00:04, 5.20it/s]
26it [00:04, 5.23it/s]
27it [00:05, 5.24it/s]
28it [00:05, 5.24it/s]
29it [00:05, 5.22it/s]
30it [00:05, 5.20it/s]
31it [00:05, 5.20it/s]
32it [00:06, 5.20it/s]
32it [00:06, 5.22it/s]
0it [00:00, ?it/s]
1it [00:00, 5.29it/s]
2it [00:00, 5.24it/s]
3it [00:00, 5.26it/s]
4it [00:00, 5.26it/s]
5it [00:00, 5.23it/s]
6it [00:01, 5.21it/s]
7it [00:01, 5.21it/s]
8it [00:01, 5.19it/s]
9it [00:01, 5.19it/s]
10it [00:01, 5.19it/s]
11it [00:02, 5.21it/s]
12it [00:02, 5.23it/s]
13it [00:02, 5.24it/s]
14it [00:02, 5.22it/s]
15it [00:02, 5.22it/s]
16it [00:03, 5.23it/s]
17it [00:03, 5.24it/s]
18it [00:03, 5.22it/s]
19it [00:03, 5.19it/s]
20it [00:03, 5.21it/s]
21it [00:04, 5.20it/s]
22it [00:04, 5.20it/s]
23it [00:04, 5.19it/s]
24it [00:04, 5.20it/s]
25it [00:04, 5.21it/s]
26it [00:04, 5.23it/s]
27it [00:05, 5.24it/s]
28it [00:05, 5.24it/s]
29it [00:05, 5.21it/s]
30it [00:05, 5.20it/s]
31it [00:05, 5.18it/s]
32it [00:06, 5.18it/s]
32it [00:06, 5.21it/s]
Total safe images: 4 out of 4