stasdeep / superside-small
(Updated 1 year, 4 months ago)
- Public
- 38 runs
- SDXL fine-tune
Prediction
stasdeep/superside-small:88b8b9f90abb029d8d841f6601587d30ce86edb1a06423ac84fc63b4b678855fIDsd5eh2tbbkm5sqbcvhcdexozlqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1000
- height
- 1000
- prompt
- In the style of TOK, a vector flat illustration of a small gaming controller in dark sky
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.7
- num_outputs
- 2
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1000, "height": 1000, "prompt": "In the style of TOK, a vector flat illustration of a small gaming controller in dark sky", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.7, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stasdeep/superside-small using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stasdeep/superside-small:88b8b9f90abb029d8d841f6601587d30ce86edb1a06423ac84fc63b4b678855f", { input: { width: 1000, height: 1000, prompt: "In the style of TOK, a vector flat illustration of a small gaming controller in dark sky", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.7, num_outputs: 2, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run stasdeep/superside-small using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stasdeep/superside-small:88b8b9f90abb029d8d841f6601587d30ce86edb1a06423ac84fc63b4b678855f", input={ "width": 1000, "height": 1000, "prompt": "In the style of TOK, a vector flat illustration of a small gaming controller in dark sky", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.7, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run stasdeep/superside-small using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "stasdeep/superside-small:88b8b9f90abb029d8d841f6601587d30ce86edb1a06423ac84fc63b4b678855f", "input": { "width": 1000, "height": 1000, "prompt": "In the style of TOK, a vector flat illustration of a small gaming controller in dark sky", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.7, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-02-13T12:17:19.680964Z", "created_at": "2024-02-13T12:16:44.911524Z", "data_removed": false, "error": null, "id": "sd5eh2tbbkm5sqbcvhcdexozlq", "input": { "width": 1000, "height": 1000, "prompt": "In the style of TOK, a vector flat illustration of a small gaming controller in dark sky", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.7, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 18150\nEnsuring enough disk space...\nFree disk space: 1450980257792\nDownloading weights: https://replicate.delivery/pbxt/A9PBtLKJqprhDFfCwiMM6l8yhkqb2lzxnxjBExtuAXp3MILJA/trained_model.tar\n2024-02-13T12:16:47Z | INFO | [ Initiating ] dest=/src/weights-cache/e2afa016c1fce9d6 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/A9PBtLKJqprhDFfCwiMM6l8yhkqb2lzxnxjBExtuAXp3MILJA/trained_model.tar\n2024-02-13T12:16:48Z | INFO | [ Complete ] dest=/src/weights-cache/e2afa016c1fce9d6 size=\"186 MB\" total_elapsed=0.750s url=https://replicate.delivery/pbxt/A9PBtLKJqprhDFfCwiMM6l8yhkqb2lzxnxjBExtuAXp3MILJA/trained_model.tar\nb''\nDownloaded weights in 0.8938148021697998 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of <s0><s1>, a vector flat illustration of a small gaming controller in dark sky\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:26, 1.84it/s]\n 4%|▍ | 2/50 [00:01<00:25, 1.85it/s]\n 6%|▌ | 3/50 [00:01<00:25, 1.85it/s]\n 8%|▊ | 4/50 [00:02<00:24, 1.85it/s]\n 10%|█ | 5/50 [00:02<00:24, 1.85it/s]\n 12%|█▏ | 6/50 [00:03<00:23, 1.85it/s]\n 14%|█▍ | 7/50 [00:03<00:23, 1.85it/s]\n 16%|█▌ | 8/50 [00:04<00:22, 1.85it/s]\n 18%|█▊ | 9/50 [00:04<00:22, 1.85it/s]\n 20%|██ | 10/50 [00:05<00:21, 1.85it/s]\n 22%|██▏ | 11/50 [00:05<00:21, 1.85it/s]\n 24%|██▍ | 12/50 [00:06<00:20, 1.85it/s]\n 26%|██▌ | 13/50 [00:07<00:19, 1.85it/s]\n 28%|██▊ | 14/50 [00:07<00:19, 1.85it/s]\n 30%|███ | 15/50 [00:08<00:18, 1.85it/s]\n 32%|███▏ | 16/50 [00:08<00:18, 1.85it/s]\n 34%|███▍ | 17/50 [00:09<00:17, 1.85it/s]\n 36%|███▌ | 18/50 [00:09<00:17, 1.85it/s]\n 38%|███▊ | 19/50 [00:10<00:16, 1.85it/s]\n 40%|████ | 20/50 [00:10<00:16, 1.85it/s]\n 42%|████▏ | 21/50 [00:11<00:15, 1.85it/s]\n 44%|████▍ | 22/50 [00:11<00:15, 1.85it/s]\n 46%|████▌ | 23/50 [00:12<00:14, 1.85it/s]\n 48%|████▊ | 24/50 [00:12<00:14, 1.85it/s]\n 50%|█████ | 25/50 [00:13<00:13, 1.85it/s]\n 52%|█████▏ | 26/50 [00:14<00:13, 1.84it/s]\n 54%|█████▍ | 27/50 [00:14<00:12, 1.84it/s]\n 56%|█████▌ | 28/50 [00:15<00:11, 1.84it/s]\n 58%|█████▊ | 29/50 [00:15<00:11, 1.84it/s]\n 60%|██████ | 30/50 [00:16<00:10, 1.84it/s]\n 62%|██████▏ | 31/50 [00:16<00:10, 1.85it/s]\n 64%|██████▍ | 32/50 [00:17<00:09, 1.84it/s]\n 66%|██████▌ | 33/50 [00:17<00:09, 1.84it/s]\n 68%|██████▊ | 34/50 [00:18<00:08, 1.84it/s]\n 70%|███████ | 35/50 [00:18<00:08, 1.84it/s]\n 72%|███████▏ | 36/50 [00:19<00:07, 1.84it/s]\n 74%|███████▍ | 37/50 [00:20<00:07, 1.84it/s]\n 76%|███████▌ | 38/50 [00:20<00:06, 1.84it/s]\n 78%|███████▊ | 39/50 [00:21<00:05, 1.84it/s]\n 80%|████████ | 40/50 [00:21<00:05, 1.84it/s]\n 82%|████████▏ | 41/50 [00:22<00:04, 1.84it/s]\n 84%|████████▍ | 42/50 [00:22<00:04, 1.84it/s]\n 86%|████████▌ | 43/50 [00:23<00:03, 1.84it/s]\n 88%|████████▊ | 44/50 [00:23<00:03, 1.84it/s]\n 90%|█████████ | 45/50 [00:24<00:02, 1.84it/s]\n 92%|█████████▏| 46/50 [00:24<00:02, 1.84it/s]\n 94%|█████████▍| 47/50 [00:25<00:01, 1.84it/s]\n 96%|█████████▌| 48/50 [00:26<00:01, 1.84it/s]\n 98%|█████████▊| 49/50 [00:26<00:00, 1.84it/s]\n100%|██████████| 50/50 [00:27<00:00, 1.84it/s]\n100%|██████████| 50/50 [00:27<00:00, 1.85it/s]", "metrics": { "predict_time": 32.115781, "total_time": 34.76944 }, "output": [ "https://replicate.delivery/pbxt/W73hbsfHg1xdOyvC2zyv1GE41rqJRV78dRvgTEqiskInfQWSA/out-0.png", "https://replicate.delivery/pbxt/pYqQVuHRK17KAhfgSsMPe9FL1L9GGfuf8faprfkxD3UyzPklE/out-1.png" ], "started_at": "2024-02-13T12:16:47.565183Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/sd5eh2tbbkm5sqbcvhcdexozlq", "cancel": "https://api.replicate.com/v1/predictions/sd5eh2tbbkm5sqbcvhcdexozlq/cancel" }, "version": "88b8b9f90abb029d8d841f6601587d30ce86edb1a06423ac84fc63b4b678855f" }
Generated inUsing seed: 18150 Ensuring enough disk space... Free disk space: 1450980257792 Downloading weights: https://replicate.delivery/pbxt/A9PBtLKJqprhDFfCwiMM6l8yhkqb2lzxnxjBExtuAXp3MILJA/trained_model.tar 2024-02-13T12:16:47Z | INFO | [ Initiating ] dest=/src/weights-cache/e2afa016c1fce9d6 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/A9PBtLKJqprhDFfCwiMM6l8yhkqb2lzxnxjBExtuAXp3MILJA/trained_model.tar 2024-02-13T12:16:48Z | INFO | [ Complete ] dest=/src/weights-cache/e2afa016c1fce9d6 size="186 MB" total_elapsed=0.750s url=https://replicate.delivery/pbxt/A9PBtLKJqprhDFfCwiMM6l8yhkqb2lzxnxjBExtuAXp3MILJA/trained_model.tar b'' Downloaded weights in 0.8938148021697998 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: In the style of <s0><s1>, a vector flat illustration of a small gaming controller in dark sky txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:26, 1.84it/s] 4%|▍ | 2/50 [00:01<00:25, 1.85it/s] 6%|▌ | 3/50 [00:01<00:25, 1.85it/s] 8%|▊ | 4/50 [00:02<00:24, 1.85it/s] 10%|█ | 5/50 [00:02<00:24, 1.85it/s] 12%|█▏ | 6/50 [00:03<00:23, 1.85it/s] 14%|█▍ | 7/50 [00:03<00:23, 1.85it/s] 16%|█▌ | 8/50 [00:04<00:22, 1.85it/s] 18%|█▊ | 9/50 [00:04<00:22, 1.85it/s] 20%|██ | 10/50 [00:05<00:21, 1.85it/s] 22%|██▏ | 11/50 [00:05<00:21, 1.85it/s] 24%|██▍ | 12/50 [00:06<00:20, 1.85it/s] 26%|██▌ | 13/50 [00:07<00:19, 1.85it/s] 28%|██▊ | 14/50 [00:07<00:19, 1.85it/s] 30%|███ | 15/50 [00:08<00:18, 1.85it/s] 32%|███▏ | 16/50 [00:08<00:18, 1.85it/s] 34%|███▍ | 17/50 [00:09<00:17, 1.85it/s] 36%|███▌ | 18/50 [00:09<00:17, 1.85it/s] 38%|███▊ | 19/50 [00:10<00:16, 1.85it/s] 40%|████ | 20/50 [00:10<00:16, 1.85it/s] 42%|████▏ | 21/50 [00:11<00:15, 1.85it/s] 44%|████▍ | 22/50 [00:11<00:15, 1.85it/s] 46%|████▌ | 23/50 [00:12<00:14, 1.85it/s] 48%|████▊ | 24/50 [00:12<00:14, 1.85it/s] 50%|█████ | 25/50 [00:13<00:13, 1.85it/s] 52%|█████▏ | 26/50 [00:14<00:13, 1.84it/s] 54%|█████▍ | 27/50 [00:14<00:12, 1.84it/s] 56%|█████▌ | 28/50 [00:15<00:11, 1.84it/s] 58%|█████▊ | 29/50 [00:15<00:11, 1.84it/s] 60%|██████ | 30/50 [00:16<00:10, 1.84it/s] 62%|██████▏ | 31/50 [00:16<00:10, 1.85it/s] 64%|██████▍ | 32/50 [00:17<00:09, 1.84it/s] 66%|██████▌ | 33/50 [00:17<00:09, 1.84it/s] 68%|██████▊ | 34/50 [00:18<00:08, 1.84it/s] 70%|███████ | 35/50 [00:18<00:08, 1.84it/s] 72%|███████▏ | 36/50 [00:19<00:07, 1.84it/s] 74%|███████▍ | 37/50 [00:20<00:07, 1.84it/s] 76%|███████▌ | 38/50 [00:20<00:06, 1.84it/s] 78%|███████▊ | 39/50 [00:21<00:05, 1.84it/s] 80%|████████ | 40/50 [00:21<00:05, 1.84it/s] 82%|████████▏ | 41/50 [00:22<00:04, 1.84it/s] 84%|████████▍ | 42/50 [00:22<00:04, 1.84it/s] 86%|████████▌ | 43/50 [00:23<00:03, 1.84it/s] 88%|████████▊ | 44/50 [00:23<00:03, 1.84it/s] 90%|█████████ | 45/50 [00:24<00:02, 1.84it/s] 92%|█████████▏| 46/50 [00:24<00:02, 1.84it/s] 94%|█████████▍| 47/50 [00:25<00:01, 1.84it/s] 96%|█████████▌| 48/50 [00:26<00:01, 1.84it/s] 98%|█████████▊| 49/50 [00:26<00:00, 1.84it/s] 100%|██████████| 50/50 [00:27<00:00, 1.84it/s] 100%|██████████| 50/50 [00:27<00:00, 1.85it/s]
Want to make some of these yourself?
Run this model