Creates an SD illusion from drawing + adds depth
{ "image": "https://www.webxr.be/art/img/image664fbd5868a94.jpeg", "border": 4, "prompt": "concept art . digital artwork, illustrative, painterly, matte painting, highly detailed", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "qr_code_content": "", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 }
npm install replicate
import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stspanho/illusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "stspanho/illusion:047c82671b5c148dd3911492baca1ae94d9666eacac12bfb74608453b3bc7c7a", { input: { image: "https://www.webxr.be/art/img/image664fbd5868a94.jpeg", border: 4, prompt: "concept art . digital artwork, illustrative, painterly, matte painting, highly detailed", guidance_scale: 7.5, negative_prompt: "ugly, disfigured, low quality, blurry, nsfw", qr_code_content: "", num_inference_steps: 40, controlnet_conditioning_scale: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
import replicate
output = replicate.run( "stspanho/illusion:047c82671b5c148dd3911492baca1ae94d9666eacac12bfb74608453b3bc7c7a", input={ "image": "https://www.webxr.be/art/img/image664fbd5868a94.jpeg", "border": 4, "prompt": "concept art . digital artwork, illustrative, painterly, matte painting, highly detailed", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "qr_code_content": "", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "stspanho/illusion:047c82671b5c148dd3911492baca1ae94d9666eacac12bfb74608453b3bc7c7a", "input": { "image": "https://www.webxr.be/art/img/image664fbd5868a94.jpeg", "border": 4, "prompt": "concept art . digital artwork, illustrative, painterly, matte painting, highly detailed", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "qr_code_content": "", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{ "completed_at": "2024-05-23T22:04:19.096418Z", "created_at": "2024-05-23T22:04:08.922000Z", "data_removed": false, "error": null, "id": "1fvc0453b9rgp0cfmxxvzxzr4r", "input": { "image": "https://www.webxr.be/art/img/image664fbd5868a94.jpeg", "border": 4, "prompt": "concept art . digital artwork, illustrative, painterly, matte painting, highly detailed", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "qr_code_content": "", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 }, "logs": "Seed: 380864877\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:11, 3.50it/s]\n 5%|▌ | 2/40 [00:00<00:07, 4.93it/s]\n 8%|▊ | 3/40 [00:00<00:06, 5.67it/s]\n 10%|█ | 4/40 [00:00<00:05, 6.09it/s]\n 12%|█▎ | 5/40 [00:00<00:05, 6.36it/s]\n 15%|█▌ | 6/40 [00:01<00:05, 6.53it/s]\n 18%|█▊ | 7/40 [00:01<00:04, 6.64it/s]\n 20%|██ | 8/40 [00:01<00:04, 6.71it/s]\n 22%|██▎ | 9/40 [00:01<00:04, 6.77it/s]\n 25%|██▌ | 10/40 [00:01<00:04, 6.81it/s]\n 28%|██▊ | 11/40 [00:01<00:04, 6.85it/s]\n 30%|███ | 12/40 [00:01<00:04, 6.86it/s]\n 32%|███▎ | 13/40 [00:02<00:03, 6.89it/s]\n 35%|███▌ | 14/40 [00:02<00:03, 6.91it/s]\n 38%|███▊ | 15/40 [00:02<00:03, 6.91it/s]\n 40%|████ | 16/40 [00:02<00:03, 6.91it/s]\n 42%|████▎ | 17/40 [00:02<00:03, 6.91it/s]\n 45%|████▌ | 18/40 [00:02<00:03, 6.91it/s]\n 48%|████▊ | 19/40 [00:02<00:03, 6.92it/s]\n 50%|█████ | 20/40 [00:03<00:02, 6.91it/s]\n 52%|█████▎ | 21/40 [00:03<00:02, 6.92it/s]\n 55%|█████▌ | 22/40 [00:03<00:02, 6.92it/s]\n 57%|█████▊ | 23/40 [00:03<00:02, 6.93it/s]\n 60%|██████ | 24/40 [00:03<00:02, 6.92it/s]\n 62%|██████▎ | 25/40 [00:03<00:02, 6.92it/s]\n 65%|██████▌ | 26/40 [00:03<00:02, 6.92it/s]\n 68%|██████▊ | 27/40 [00:04<00:01, 6.92it/s]\n 70%|███████ | 28/40 [00:04<00:01, 6.91it/s]\n 72%|███████▎ | 29/40 [00:04<00:01, 6.90it/s]\n 75%|███████▌ | 30/40 [00:04<00:01, 6.91it/s]\n 78%|███████▊ | 31/40 [00:04<00:01, 6.91it/s]\n 80%|████████ | 32/40 [00:04<00:01, 6.90it/s]\n 82%|████████▎ | 33/40 [00:04<00:01, 6.90it/s]\n 85%|████████▌ | 34/40 [00:05<00:00, 6.90it/s]\n 88%|████████▊ | 35/40 [00:05<00:00, 6.91it/s]\n 90%|█████████ | 36/40 [00:05<00:00, 6.91it/s]\n 92%|█████████▎| 37/40 [00:05<00:00, 6.91it/s]\n 95%|█████████▌| 38/40 [00:05<00:00, 6.91it/s]\n 98%|█████████▊| 39/40 [00:05<00:00, 6.91it/s]\n100%|██████████| 40/40 [00:05<00:00, 6.92it/s]\n100%|██████████| 40/40 [00:05<00:00, 6.75it/s]", "metrics": { "predict_time": 10.12624, "total_time": 10.174418 }, "output": [ "https://replicate.delivery/pbxt/eqqsbrcyBoQxKqKAOyw5fFsen7UEXicIsu1Lywy1In2C7tulA/output-0.png", "https://replicate.delivery/pbxt/iX5aWzpVqQbeNafGzZFfp2OYrfZ87yzeMlineRhGnhLoYv1tE/output-depth-0.png" ], "started_at": "2024-05-23T22:04:08.970178Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/1fvc0453b9rgp0cfmxxvzxzr4r", "cancel": "https://api.replicate.com/v1/predictions/1fvc0453b9rgp0cfmxxvzxzr4r/cancel" }, "version": "047c82671b5c148dd3911492baca1ae94d9666eacac12bfb74608453b3bc7c7a" }
Seed: 380864877 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:11, 3.50it/s] 5%|▌ | 2/40 [00:00<00:07, 4.93it/s] 8%|▊ | 3/40 [00:00<00:06, 5.67it/s] 10%|█ | 4/40 [00:00<00:05, 6.09it/s] 12%|█▎ | 5/40 [00:00<00:05, 6.36it/s] 15%|█▌ | 6/40 [00:01<00:05, 6.53it/s] 18%|█▊ | 7/40 [00:01<00:04, 6.64it/s] 20%|██ | 8/40 [00:01<00:04, 6.71it/s] 22%|██▎ | 9/40 [00:01<00:04, 6.77it/s] 25%|██▌ | 10/40 [00:01<00:04, 6.81it/s] 28%|██▊ | 11/40 [00:01<00:04, 6.85it/s] 30%|███ | 12/40 [00:01<00:04, 6.86it/s] 32%|███▎ | 13/40 [00:02<00:03, 6.89it/s] 35%|███▌ | 14/40 [00:02<00:03, 6.91it/s] 38%|███▊ | 15/40 [00:02<00:03, 6.91it/s] 40%|████ | 16/40 [00:02<00:03, 6.91it/s] 42%|████▎ | 17/40 [00:02<00:03, 6.91it/s] 45%|████▌ | 18/40 [00:02<00:03, 6.91it/s] 48%|████▊ | 19/40 [00:02<00:03, 6.92it/s] 50%|█████ | 20/40 [00:03<00:02, 6.91it/s] 52%|█████▎ | 21/40 [00:03<00:02, 6.92it/s] 55%|█████▌ | 22/40 [00:03<00:02, 6.92it/s] 57%|█████▊ | 23/40 [00:03<00:02, 6.93it/s] 60%|██████ | 24/40 [00:03<00:02, 6.92it/s] 62%|██████▎ | 25/40 [00:03<00:02, 6.92it/s] 65%|██████▌ | 26/40 [00:03<00:02, 6.92it/s] 68%|██████▊ | 27/40 [00:04<00:01, 6.92it/s] 70%|███████ | 28/40 [00:04<00:01, 6.91it/s] 72%|███████▎ | 29/40 [00:04<00:01, 6.90it/s] 75%|███████▌ | 30/40 [00:04<00:01, 6.91it/s] 78%|███████▊ | 31/40 [00:04<00:01, 6.91it/s] 80%|████████ | 32/40 [00:04<00:01, 6.90it/s] 82%|████████▎ | 33/40 [00:04<00:01, 6.90it/s] 85%|████████▌ | 34/40 [00:05<00:00, 6.90it/s] 88%|████████▊ | 35/40 [00:05<00:00, 6.91it/s] 90%|█████████ | 36/40 [00:05<00:00, 6.91it/s] 92%|█████████▎| 37/40 [00:05<00:00, 6.91it/s] 95%|█████████▌| 38/40 [00:05<00:00, 6.91it/s] 98%|█████████▊| 39/40 [00:05<00:00, 6.91it/s] 100%|██████████| 40/40 [00:05<00:00, 6.92it/s] 100%|██████████| 40/40 [00:05<00:00, 6.75it/s]
Want to make some of these yourself?
This model is not yet booted but ready for API calls. Your first API call will boot the model and may take longer, but after that subsequent responses will be fast.
This model runs on L40S.