Readme
You can inject ytahk13 via the Token tahktuah.
What a time to be alive!
Training based off: my personal images, 1000 Steps
A fine-tuned FLUX.1 model (Updated 4 months, 3 weeks ago)
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run sundai-club/ytahk13 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"sundai-club/ytahk13:19d33d2b70ef80e45cb831c8ed72f65083971e211a1ea7b8947cc54cf8d031f5",
{
input: {
model: "dev",
prompt: "tahktuah standing in in front of the golden gate bridge",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 4.57,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run sundai-club/ytahk13 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"sundai-club/ytahk13:19d33d2b70ef80e45cb831c8ed72f65083971e211a1ea7b8947cc54cf8d031f5",
input={
"model": "dev",
"prompt": "tahktuah standing in in front of the golden gate bridge",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 4.57,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run sundai-club/ytahk13 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "sundai-club/ytahk13:19d33d2b70ef80e45cb831c8ed72f65083971e211a1ea7b8947cc54cf8d031f5",
"input": {
"model": "dev",
"prompt": "tahktuah standing in in front of the golden gate bridge",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 4.57,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-01-20T20:46:09.296946Z",
"created_at": "2025-01-20T20:46:01.073000Z",
"data_removed": false,
"error": null,
"id": "b7xddygke5rma0cmgnvtn77hvr",
"input": {
"model": "dev",
"prompt": "tahktuah standing in in front of the golden gate bridge",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 4.57,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "2025-01-20 20:46:02.790 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-20 20:46:02.790 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2797.64it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2701.19it/s]\n2025-01-20 20:46:02.903 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\n2025-01-20 20:46:02.904 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/d72345d095504252\n2025-01-20 20:46:03.018 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-20 20:46:03.018 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-20 20:46:03.018 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2806.30it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2708.84it/s]\n2025-01-20 20:46:03.131 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s\nUsing seed: 52650\n0it [00:00, ?it/s]\n1it [00:00, 8.33it/s]\n2it [00:00, 5.82it/s]\n3it [00:00, 5.30it/s]\n4it [00:00, 5.08it/s]\n5it [00:00, 4.94it/s]\n6it [00:01, 4.85it/s]\n7it [00:01, 4.83it/s]\n8it [00:01, 4.80it/s]\n9it [00:01, 4.78it/s]\n10it [00:02, 4.76it/s]\n11it [00:02, 4.75it/s]\n12it [00:02, 4.74it/s]\n13it [00:02, 4.75it/s]\n14it [00:02, 4.76it/s]\n15it [00:03, 4.75it/s]\n16it [00:03, 4.75it/s]\n17it [00:03, 4.74it/s]\n18it [00:03, 4.74it/s]\n19it [00:03, 4.75it/s]\n20it [00:04, 4.74it/s]\n21it [00:04, 4.75it/s]\n22it [00:04, 4.75it/s]\n23it [00:04, 4.75it/s]\n24it [00:04, 4.75it/s]\n25it [00:05, 4.75it/s]\n26it [00:05, 4.75it/s]\n27it [00:05, 4.74it/s]\n28it [00:05, 4.75it/s]\n28it [00:05, 4.82it/s]\nTotal safe images: 1 out of 1",
"metrics": {
"predict_time": 6.505956063,
"total_time": 8.223946
},
"output": [
"https://replicate.delivery/xezq/15resGr0Rt0FdScVaRQz0IzFWB1xYy8xSZIw8cqf3atRgGHUA/out-0.webp"
],
"started_at": "2025-01-20T20:46:02.790990Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-ymto5kfp245a7pl4pe6ge3is5dnmi5tersg4vqu5udwcxodmn2ta",
"get": "https://api.replicate.com/v1/predictions/b7xddygke5rma0cmgnvtn77hvr",
"cancel": "https://api.replicate.com/v1/predictions/b7xddygke5rma0cmgnvtn77hvr/cancel"
},
"version": "19d33d2b70ef80e45cb831c8ed72f65083971e211a1ea7b8947cc54cf8d031f5"
}
2025-01-20 20:46:02.790 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-20 20:46:02.790 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2797.64it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2701.19it/s]
2025-01-20 20:46:02.903 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
2025-01-20 20:46:02.904 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/d72345d095504252
2025-01-20 20:46:03.018 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-20 20:46:03.018 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-20 20:46:03.018 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2806.30it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2708.84it/s]
2025-01-20 20:46:03.131 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s
Using seed: 52650
0it [00:00, ?it/s]
1it [00:00, 8.33it/s]
2it [00:00, 5.82it/s]
3it [00:00, 5.30it/s]
4it [00:00, 5.08it/s]
5it [00:00, 4.94it/s]
6it [00:01, 4.85it/s]
7it [00:01, 4.83it/s]
8it [00:01, 4.80it/s]
9it [00:01, 4.78it/s]
10it [00:02, 4.76it/s]
11it [00:02, 4.75it/s]
12it [00:02, 4.74it/s]
13it [00:02, 4.75it/s]
14it [00:02, 4.76it/s]
15it [00:03, 4.75it/s]
16it [00:03, 4.75it/s]
17it [00:03, 4.74it/s]
18it [00:03, 4.74it/s]
19it [00:03, 4.75it/s]
20it [00:04, 4.74it/s]
21it [00:04, 4.75it/s]
22it [00:04, 4.75it/s]
23it [00:04, 4.75it/s]
24it [00:04, 4.75it/s]
25it [00:05, 4.75it/s]
26it [00:05, 4.75it/s]
27it [00:05, 4.74it/s]
28it [00:05, 4.75it/s]
28it [00:05, 4.82it/s]
Total safe images: 1 out of 1
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
You can inject ytahk13 via the Token tahktuah.
What a time to be alive!
Training based off: my personal images, 1000 Steps
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
2025-01-20 20:46:02.790 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-20 20:46:02.790 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2797.64it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2701.19it/s]
2025-01-20 20:46:02.903 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
2025-01-20 20:46:02.904 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/d72345d095504252
2025-01-20 20:46:03.018 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-20 20:46:03.018 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-20 20:46:03.018 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2806.30it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2708.84it/s]
2025-01-20 20:46:03.131 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s
Using seed: 52650
0it [00:00, ?it/s]
1it [00:00, 8.33it/s]
2it [00:00, 5.82it/s]
3it [00:00, 5.30it/s]
4it [00:00, 5.08it/s]
5it [00:00, 4.94it/s]
6it [00:01, 4.85it/s]
7it [00:01, 4.83it/s]
8it [00:01, 4.80it/s]
9it [00:01, 4.78it/s]
10it [00:02, 4.76it/s]
11it [00:02, 4.75it/s]
12it [00:02, 4.74it/s]
13it [00:02, 4.75it/s]
14it [00:02, 4.76it/s]
15it [00:03, 4.75it/s]
16it [00:03, 4.75it/s]
17it [00:03, 4.74it/s]
18it [00:03, 4.74it/s]
19it [00:03, 4.75it/s]
20it [00:04, 4.74it/s]
21it [00:04, 4.75it/s]
22it [00:04, 4.75it/s]
23it [00:04, 4.75it/s]
24it [00:04, 4.75it/s]
25it [00:05, 4.75it/s]
26it [00:05, 4.75it/s]
27it [00:05, 4.74it/s]
28it [00:05, 4.75it/s]
28it [00:05, 4.82it/s]
Total safe images: 1 out of 1