You're looking at a specific version of this model. Jump to the model overview.

tgohblio /instant-id-multicontrolnet:b8e1c052

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
face_image_path
string
Image of your face
pose_image_path
string
Reference pose image
prompt
string
a person
Input prompt
negative_prompt
string
ugly, low quality, deformed face
Input negative prompt
width
integer
640

Min: 512

Max: 2048

Width of output image
height
integer
640

Min: 512

Max: 2048

Height of output image
model
string (enum)
AlbedoBase XL V2

Options:

AlbedoBase XL V2, Juggernaut XL V8, Animagine XL V3, HelloWorld XL 5.0 GPT4V

Select SDXL model
enable_LCM
boolean
False
Use LCM-LoRA for faster inference, with slightly lower quality images as trade-off.
scheduler
string (enum)
DPMSolverMultistepScheduler

Options:

DEISMultistepScheduler, HeunDiscreteScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverMultistepScheduler-Karras, DPMSolverMultistepScheduler-Karras-SDE

Scheduler
adapter_strength_ratio
number
0.8

Max: 1

Image adapter strength (for detail)
identitynet_strength_ratio
number
0.8

Max: 1

IdentityNet strength (for fidelity)
pose
boolean
False
Use pose for skeleton inference
canny
boolean
False
Use canny for edge detection
depth_map
boolean
False
Use depth for depth map estimation
pose_strength
number
0.5

Max: 1.5

None
canny_strength
number
0.5

Max: 1.5

None
depth_strength
number
0.5

Max: 1.5

None
num_steps
integer
25

Min: 1

Max: 50

Number of denoising steps. If enable LCM-LoRA, optimum is 6-8.
guidance_scale
number
7

Max: 10

Scale for classifier-free guidance. If enable LCM-LoRA, optimum is 0-5. Otherwise, 7-8.
seed
integer
0

Max: 2147483647

Seed number. Set to non-zero to make the image reproducible.
safety_checker
boolean
True
Safety checker is enabled by default. Un-tick to expose unfiltered results.

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'format': 'uri', 'title': 'Output', 'type': 'string'}