Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run thijssdaniels/room-gpt using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"thijssdaniels/room-gpt:bfcb42751f8f702e4661daa3e592c960cdec178831df79d361c54a78e8ec87e1",
{
input: {
seed: null,
width: 1024,
height: 1024,
prompt: "a close up corner room white walls with big windows",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 4,
refine_steps: null,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run thijssdaniels/room-gpt using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"thijssdaniels/room-gpt:bfcb42751f8f702e4661daa3e592c960cdec178831df79d361c54a78e8ec87e1",
input={
"seed": null,
"width": 1024,
"height": 1024,
"prompt": "a close up corner room white walls with big windows",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"refine_steps": null,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run thijssdaniels/room-gpt using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "thijssdaniels/room-gpt:bfcb42751f8f702e4661daa3e592c960cdec178831df79d361c54a78e8ec87e1",
"input": {
"seed": null,
"width": 1024,
"height": 1024,
"prompt": "a close up corner room white walls with big windows",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"refine_steps": null,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-10-30T15:24:38.561858Z",
"created_at": "2023-10-30T15:23:31.454878Z",
"data_removed": false,
"error": null,
"id": "mctcre3bvdy5fknna6bayftmji",
"input": {
"mask": null,
"seed": null,
"image": null,
"width": 1024,
"height": 1024,
"prompt": "a close up corner room white walls with big windows",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"refine_steps": null,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 1251\nskipping loading .. weights already loaded\nPrompt: a close up corner room white walls with big windows\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:56, 1.16s/it]\n 4%|▍ | 2/50 [00:02<00:55, 1.15s/it]\n 6%|▌ | 3/50 [00:03<00:54, 1.15s/it]\n 8%|▊ | 4/50 [00:04<00:53, 1.16s/it]\n 10%|█ | 5/50 [00:05<00:51, 1.15s/it]\n 12%|█▏ | 6/50 [00:06<00:50, 1.15s/it]\n 14%|█▍ | 7/50 [00:08<00:49, 1.16s/it]\n 16%|█▌ | 8/50 [00:09<00:48, 1.16s/it]\n 18%|█▊ | 9/50 [00:10<00:47, 1.16s/it]\n 20%|██ | 10/50 [00:11<00:46, 1.16s/it]\n 22%|██▏ | 11/50 [00:12<00:45, 1.16s/it]\n 24%|██▍ | 12/50 [00:13<00:44, 1.16s/it]\n 26%|██▌ | 13/50 [00:15<00:42, 1.16s/it]\n 28%|██▊ | 14/50 [00:16<00:41, 1.16s/it]\n 30%|███ | 15/50 [00:17<00:40, 1.16s/it]\n 32%|███▏ | 16/50 [00:18<00:39, 1.16s/it]\n 34%|███▍ | 17/50 [00:19<00:38, 1.16s/it]\n 36%|███▌ | 18/50 [00:20<00:37, 1.17s/it]\n 38%|███▊ | 19/50 [00:22<00:36, 1.16s/it]\n 40%|████ | 20/50 [00:23<00:34, 1.16s/it]\n 42%|████▏ | 21/50 [00:24<00:33, 1.16s/it]\n 44%|████▍ | 22/50 [00:25<00:32, 1.16s/it]\n 46%|████▌ | 23/50 [00:26<00:31, 1.16s/it]\n 48%|████▊ | 24/50 [00:27<00:30, 1.16s/it]\n 50%|█████ | 25/50 [00:28<00:29, 1.16s/it]\n 52%|█████▏ | 26/50 [00:30<00:27, 1.16s/it]\n 54%|█████▍ | 27/50 [00:31<00:26, 1.16s/it]\n 56%|█████▌ | 28/50 [00:32<00:25, 1.16s/it]\n 58%|█████▊ | 29/50 [00:33<00:24, 1.16s/it]\n 60%|██████ | 30/50 [00:34<00:23, 1.16s/it]\n 62%|██████▏ | 31/50 [00:35<00:22, 1.16s/it]\n 64%|██████▍ | 32/50 [00:37<00:20, 1.16s/it]\n 66%|██████▌ | 33/50 [00:38<00:19, 1.16s/it]\n 68%|██████▊ | 34/50 [00:39<00:18, 1.16s/it]\n 70%|███████ | 35/50 [00:40<00:17, 1.16s/it]\n 72%|███████▏ | 36/50 [00:41<00:16, 1.16s/it]\n 74%|███████▍ | 37/50 [00:42<00:15, 1.16s/it]\n 76%|███████▌ | 38/50 [00:44<00:13, 1.17s/it]\n 78%|███████▊ | 39/50 [00:45<00:12, 1.16s/it]\n 80%|████████ | 40/50 [00:46<00:11, 1.16s/it]\n 82%|████████▏ | 41/50 [00:47<00:10, 1.16s/it]\n 84%|████████▍ | 42/50 [00:48<00:09, 1.16s/it]\n 86%|████████▌ | 43/50 [00:49<00:08, 1.17s/it]\n 88%|████████▊ | 44/50 [00:51<00:07, 1.17s/it]\n 90%|█████████ | 45/50 [00:52<00:05, 1.17s/it]\n 92%|█████████▏| 46/50 [00:53<00:04, 1.17s/it]\n 94%|█████████▍| 47/50 [00:54<00:03, 1.17s/it]\n 96%|█████████▌| 48/50 [00:55<00:02, 1.17s/it]\n 98%|█████████▊| 49/50 [00:56<00:01, 1.17s/it]\n100%|██████████| 50/50 [00:58<00:00, 1.16s/it]\n100%|██████████| 50/50 [00:58<00:00, 1.16s/it]",
"metrics": {
"predict_time": 64.415894,
"total_time": 67.10698
},
"output": [
"https://pbxt.replicate.delivery/F2EcSgm4sF4aMF9YOQJHvRK73fpyBfaafTADuxCTuSHolvmjA/out-0.png",
"https://pbxt.replicate.delivery/req3zPRWWS14AiCfPAxDH1870lb5oJYeSqlYybZudUXqlvmjA/out-1.png",
"https://pbxt.replicate.delivery/8y7et4fxf0PJWoQK0higorf7T5JhlK7WkADSofGWfIaat81cE/out-2.png",
"https://pbxt.replicate.delivery/XiBGzd1PSvrBEFI3tqOTcqj15kGsalSCBHYqfX7E28Cb5r5IA/out-3.png"
],
"started_at": "2023-10-30T15:23:34.145964Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/mctcre3bvdy5fknna6bayftmji",
"cancel": "https://api.replicate.com/v1/predictions/mctcre3bvdy5fknna6bayftmji/cancel"
},
"version": "bfcb42751f8f702e4661daa3e592c960cdec178831df79d361c54a78e8ec87e1"
}
Using seed: 1251
skipping loading .. weights already loaded
Prompt: a close up corner room white walls with big windows
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:01<00:56, 1.16s/it]
4%|▍ | 2/50 [00:02<00:55, 1.15s/it]
6%|▌ | 3/50 [00:03<00:54, 1.15s/it]
8%|▊ | 4/50 [00:04<00:53, 1.16s/it]
10%|█ | 5/50 [00:05<00:51, 1.15s/it]
12%|█▏ | 6/50 [00:06<00:50, 1.15s/it]
14%|█▍ | 7/50 [00:08<00:49, 1.16s/it]
16%|█▌ | 8/50 [00:09<00:48, 1.16s/it]
18%|█▊ | 9/50 [00:10<00:47, 1.16s/it]
20%|██ | 10/50 [00:11<00:46, 1.16s/it]
22%|██▏ | 11/50 [00:12<00:45, 1.16s/it]
24%|██▍ | 12/50 [00:13<00:44, 1.16s/it]
26%|██▌ | 13/50 [00:15<00:42, 1.16s/it]
28%|██▊ | 14/50 [00:16<00:41, 1.16s/it]
30%|███ | 15/50 [00:17<00:40, 1.16s/it]
32%|███▏ | 16/50 [00:18<00:39, 1.16s/it]
34%|███▍ | 17/50 [00:19<00:38, 1.16s/it]
36%|███▌ | 18/50 [00:20<00:37, 1.17s/it]
38%|███▊ | 19/50 [00:22<00:36, 1.16s/it]
40%|████ | 20/50 [00:23<00:34, 1.16s/it]
42%|████▏ | 21/50 [00:24<00:33, 1.16s/it]
44%|████▍ | 22/50 [00:25<00:32, 1.16s/it]
46%|████▌ | 23/50 [00:26<00:31, 1.16s/it]
48%|████▊ | 24/50 [00:27<00:30, 1.16s/it]
50%|█████ | 25/50 [00:28<00:29, 1.16s/it]
52%|█████▏ | 26/50 [00:30<00:27, 1.16s/it]
54%|█████▍ | 27/50 [00:31<00:26, 1.16s/it]
56%|█████▌ | 28/50 [00:32<00:25, 1.16s/it]
58%|█████▊ | 29/50 [00:33<00:24, 1.16s/it]
60%|██████ | 30/50 [00:34<00:23, 1.16s/it]
62%|██████▏ | 31/50 [00:35<00:22, 1.16s/it]
64%|██████▍ | 32/50 [00:37<00:20, 1.16s/it]
66%|██████▌ | 33/50 [00:38<00:19, 1.16s/it]
68%|██████▊ | 34/50 [00:39<00:18, 1.16s/it]
70%|███████ | 35/50 [00:40<00:17, 1.16s/it]
72%|███████▏ | 36/50 [00:41<00:16, 1.16s/it]
74%|███████▍ | 37/50 [00:42<00:15, 1.16s/it]
76%|███████▌ | 38/50 [00:44<00:13, 1.17s/it]
78%|███████▊ | 39/50 [00:45<00:12, 1.16s/it]
80%|████████ | 40/50 [00:46<00:11, 1.16s/it]
82%|████████▏ | 41/50 [00:47<00:10, 1.16s/it]
84%|████████▍ | 42/50 [00:48<00:09, 1.16s/it]
86%|████████▌ | 43/50 [00:49<00:08, 1.17s/it]
88%|████████▊ | 44/50 [00:51<00:07, 1.17s/it]
90%|█████████ | 45/50 [00:52<00:05, 1.17s/it]
92%|█████████▏| 46/50 [00:53<00:04, 1.17s/it]
94%|█████████▍| 47/50 [00:54<00:03, 1.17s/it]
96%|█████████▌| 48/50 [00:55<00:02, 1.17s/it]
98%|█████████▊| 49/50 [00:56<00:01, 1.17s/it]
100%|██████████| 50/50 [00:58<00:00, 1.16s/it]
100%|██████████| 50/50 [00:58<00:00, 1.16s/it]
This model costs approximately $0.0066 to run on Replicate, or 151 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 7 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 1251
skipping loading .. weights already loaded
Prompt: a close up corner room white walls with big windows
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:01<00:56, 1.16s/it]
4%|▍ | 2/50 [00:02<00:55, 1.15s/it]
6%|▌ | 3/50 [00:03<00:54, 1.15s/it]
8%|▊ | 4/50 [00:04<00:53, 1.16s/it]
10%|█ | 5/50 [00:05<00:51, 1.15s/it]
12%|█▏ | 6/50 [00:06<00:50, 1.15s/it]
14%|█▍ | 7/50 [00:08<00:49, 1.16s/it]
16%|█▌ | 8/50 [00:09<00:48, 1.16s/it]
18%|█▊ | 9/50 [00:10<00:47, 1.16s/it]
20%|██ | 10/50 [00:11<00:46, 1.16s/it]
22%|██▏ | 11/50 [00:12<00:45, 1.16s/it]
24%|██▍ | 12/50 [00:13<00:44, 1.16s/it]
26%|██▌ | 13/50 [00:15<00:42, 1.16s/it]
28%|██▊ | 14/50 [00:16<00:41, 1.16s/it]
30%|███ | 15/50 [00:17<00:40, 1.16s/it]
32%|███▏ | 16/50 [00:18<00:39, 1.16s/it]
34%|███▍ | 17/50 [00:19<00:38, 1.16s/it]
36%|███▌ | 18/50 [00:20<00:37, 1.17s/it]
38%|███▊ | 19/50 [00:22<00:36, 1.16s/it]
40%|████ | 20/50 [00:23<00:34, 1.16s/it]
42%|████▏ | 21/50 [00:24<00:33, 1.16s/it]
44%|████▍ | 22/50 [00:25<00:32, 1.16s/it]
46%|████▌ | 23/50 [00:26<00:31, 1.16s/it]
48%|████▊ | 24/50 [00:27<00:30, 1.16s/it]
50%|█████ | 25/50 [00:28<00:29, 1.16s/it]
52%|█████▏ | 26/50 [00:30<00:27, 1.16s/it]
54%|█████▍ | 27/50 [00:31<00:26, 1.16s/it]
56%|█████▌ | 28/50 [00:32<00:25, 1.16s/it]
58%|█████▊ | 29/50 [00:33<00:24, 1.16s/it]
60%|██████ | 30/50 [00:34<00:23, 1.16s/it]
62%|██████▏ | 31/50 [00:35<00:22, 1.16s/it]
64%|██████▍ | 32/50 [00:37<00:20, 1.16s/it]
66%|██████▌ | 33/50 [00:38<00:19, 1.16s/it]
68%|██████▊ | 34/50 [00:39<00:18, 1.16s/it]
70%|███████ | 35/50 [00:40<00:17, 1.16s/it]
72%|███████▏ | 36/50 [00:41<00:16, 1.16s/it]
74%|███████▍ | 37/50 [00:42<00:15, 1.16s/it]
76%|███████▌ | 38/50 [00:44<00:13, 1.17s/it]
78%|███████▊ | 39/50 [00:45<00:12, 1.16s/it]
80%|████████ | 40/50 [00:46<00:11, 1.16s/it]
82%|████████▏ | 41/50 [00:47<00:10, 1.16s/it]
84%|████████▍ | 42/50 [00:48<00:09, 1.16s/it]
86%|████████▌ | 43/50 [00:49<00:08, 1.17s/it]
88%|████████▊ | 44/50 [00:51<00:07, 1.17s/it]
90%|█████████ | 45/50 [00:52<00:05, 1.17s/it]
92%|█████████▏| 46/50 [00:53<00:04, 1.17s/it]
94%|█████████▍| 47/50 [00:54<00:03, 1.17s/it]
96%|█████████▌| 48/50 [00:55<00:02, 1.17s/it]
98%|█████████▊| 49/50 [00:56<00:01, 1.17s/it]
100%|██████████| 50/50 [00:58<00:00, 1.16s/it]
100%|██████████| 50/50 [00:58<00:00, 1.16s/it]