You're looking at a specific version of this model. Jump to the model overview.

usamaehsan /controlnet-x-realistic-vision:5b9b772e

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
Prompt - using compel, use +++ to increase words weight:: doc: https://github.com/damian0815/compel/tree/main/doc || https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#attention-weighting
negative_prompt
string
Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
Negative prompt - using compel, use +++ to increase words weight//// negative-embeddings available ///// FastNegativeV2 , boring_e621_v4 , verybadimagenegative_v1 || to use them, write their keyword in negative prompt
num_inference_steps
integer
20
Steps to run denoising
guidance_scale
number
7

Min: 0.1

Max: 30

Scale for classifier-free guidance
seed
integer
Seed
eta
number
0
Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise
guess_mode
boolean
False
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
disable_safety_check
boolean
False
Disable safety check. Use at your own risk!
num_outputs
integer
1

Min: 1

Max: 10

Number of images to generate
max_width
integer
512
Max width/Resolution of image
max_height
integer
512
Max height/Resolution of image
scheduler
string (enum)
DDIM

Options:

DDIM, DPMSolverMultistep, HeunDiscrete, K_EULER_ANCESTRAL, K_EULER, KLMS, PNDM, UniPCMultistep

Choose a scheduler.
lineart_image
string
Control image for canny controlnet
lineart_conditioning_scale
number
1
Conditioning scale for canny controlnet
depth_image
string
Control image for depth controlnet
depth_conditioning_scale
number
1
Conditioning scale for depth controlnet
canny_image
string
Control image for canny controlnet
canny_conditioning_scale
number
1
Conditioning scale for canny controlnet
mlsd_image
string
Control image for mlsd controlnet
mlsd_conditioning_scale
number
1
Conditioning scale for mlsd controlnet
inpainting_image
string
Control image for inpainting controlnet
mask_image
string
mask image for inpainting controlnet
positive_auto_mask_text
string
comma seperated list of objects for mask, AI will auto create mask of these objects, if mask text is given, mask image will not work
negative_auto_mask_text
string
comma seperated list of objects you dont want to mask, AI will auto delete these objects from mask, only works if positive_auto_mask_text is given
inpainting_conditioning_scale
number
1
Conditioning scale for brightness controlnet
sorted_controlnets
string
tile, inpainting, lineart
Comma seperated string of controlnet names, list of names: tile, inpainting, lineart,depth ,scribble , brightness /// example value: tile, inpainting, lineart
ip_adapter_ckpt
string (enum)
ip-adapter_sd15.bin

Options:

ip-adapter_sd15.bin, ip-adapter-plus_sd15.bin, ip-adapter-plus-face_sd15.bin

IP Adapter checkpoint
ip_adapter_image
string
IP Adapter image
ip_adapter_weight
number
1
IP Adapter weight
img2img_image
string
Image2image image
img2img_strength
number
0.5
img2img strength, does not work when inpainting image is given, 0.1-same image, 0.99-complete destruction of image
add_more_detail_lora_scale
number
0.5
Scale/ weight of more_details lora, more scale = more details, disabled on 0
detail_tweaker_lora_weight
number
0
disabled on 0
film_grain_lora_weight
number
0
disabled on 0
epi_noise_offset_lora_weight
number
0
disabled on 0
color_temprature_slider_lora_weight
number
0
disabled on 0

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'items': {'format': 'uri', 'type': 'string'},
 'title': 'Output',
 'type': 'array'}