usamaehsan/instant-id-x-juggernaut


controlnet 1.1 lineart x realistic-vision-v2.0 (updated to v5)


Multi-Controlnet + consistency-decoder + INPAINTING + realestic-vision-v5 + Prompt-Weight + Single-Controlnet

controlnet-lineart-brightness-tile-inpainting + low res fix with tile

works with inpainting and multi-controlnet + single-controlnet || ip-adapter + without ip adapter

Inpainting || multi-controlnet || single-controlnet || ip-adapter || ip adapter face || ip adapter plus || No ip adapter


Experimental & for non-commercial use only


multi controlnet union pro <-

Fast FLUX DEV -> Flux Controlnet Canny, Controlnet Depth , Controlnet Line Art, Controlnet Upscaler - You can use just one controlnet or All - LORAs: HyperFlex LoRA , Add Details LoRA , Realism LoRA

Prediction
usamaehsan/instant-id-x-juggernaut:3af6cc3f0b1491a877230dbc31554c6303b786d46f1c0926ff5cd36cdd0f02a2ID2pzv4stboj3qydc3dvd5bppe7uStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1051
- height
- 1040
- prompt
- This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait
- max_side
- 1280
- min_side
- 1024
- scheduler
- UniPCMultistep
- resize_image
- guidance_scale
- 3.5
- negative_prompt
- ip_adapter_scale
- 1
- enhance_face_region
- num_inference_steps
- 10
- micro_detail_lora_weight
- 0
- controlnet_conditioning_scale
- 0.6
{ "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "max_side": 1280, "min_side": 1024, "scheduler": "UniPCMultistep", "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "usamaehsan/instant-id-x-juggernaut:3af6cc3f0b1491a877230dbc31554c6303b786d46f1c0926ff5cd36cdd0f02a2", { input: { image: "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", width: 1051, height: 1040, prompt: "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", max_side: 1280, min_side: 1024, scheduler: "UniPCMultistep", resize_image: true, guidance_scale: 3.5, negative_prompt: "", ip_adapter_scale: 1, enhance_face_region: true, num_inference_steps: 10, micro_detail_lora_weight: 0, controlnet_conditioning_scale: 0.6 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "usamaehsan/instant-id-x-juggernaut:3af6cc3f0b1491a877230dbc31554c6303b786d46f1c0926ff5cd36cdd0f02a2", input={ "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "max_side": 1280, "min_side": 1024, "scheduler": "UniPCMultistep", "resize_image": True, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": True, "num_inference_steps": 10, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "usamaehsan/instant-id-x-juggernaut:3af6cc3f0b1491a877230dbc31554c6303b786d46f1c0926ff5cd36cdd0f02a2", "input": { "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "max_side": 1280, "min_side": 1024, "scheduler": "UniPCMultistep", "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-02-02T09:55:24.702603Z", "created_at": "2024-02-02T09:52:10.256367Z", "data_removed": false, "error": null, "id": "2pzv4stboj3qydc3dvd5bppe7u", "input": { "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "max_side": 1280, "min_side": 1024, "scheduler": "UniPCMultistep", "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6 }, "logs": "[!] Resizing output to 1051x1040\nset det-size: (1051, 1040)\nwarning: det_size is already set in detection model, ignore\nTime taken to resize image-- : -0.03 seconds\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.\nTo use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.\nP = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4\nTime taken to get face info-- : -6.44 seconds\nTime taken to draw kps-- : -0.14 seconds\nTime taken to enhance face region-- : -0.01 seconds\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:02<00:25, 2.80s/it]\n 20%|██ | 2/10 [00:03<00:12, 1.55s/it]\n 30%|███ | 3/10 [00:04<00:08, 1.16s/it]\n 40%|████ | 4/10 [00:04<00:05, 1.04it/s]\n 50%|█████ | 5/10 [00:05<00:04, 1.16it/s]\n 60%|██████ | 6/10 [00:06<00:03, 1.26it/s]\n 70%|███████ | 7/10 [00:06<00:02, 1.32it/s]\n 80%|████████ | 8/10 [00:07<00:01, 1.37it/s]\n 90%|█████████ | 9/10 [00:08<00:00, 1.40it/s]\n100%|██████████| 10/10 [00:08<00:00, 1.43it/s]\n100%|██████████| 10/10 [00:08<00:00, 1.13it/s]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/peft/tuners/lora/layer.py:595: UserWarning: Already unmerged. Nothing to do.\nwarnings.warn(\"Already unmerged. Nothing to do.\")\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/peft/tuners/lora/layer.py:256: UserWarning: Already unmerged. Nothing to do.\nwarnings.warn(\"Already unmerged. Nothing to do.\")", "metrics": { "predict_time": 18.86616, "total_time": 194.446236 }, "output": "https://replicate.delivery/pbxt/GmXcXWqOpwoFGFfpmqE8Rt2Twh7hx5YgY2MYN7odYt2FcTJJA/result.jpg", "started_at": "2024-02-02T09:55:05.836443Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2pzv4stboj3qydc3dvd5bppe7u", "cancel": "https://api.replicate.com/v1/predictions/2pzv4stboj3qydc3dvd5bppe7u/cancel" }, "version": "3af6cc3f0b1491a877230dbc31554c6303b786d46f1c0926ff5cd36cdd0f02a2" }
Generated in[!] Resizing output to 1051x1040 set det-size: (1051, 1040) warning: det_size is already set in detection model, ignore Time taken to resize image-- : -0.03 seconds /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions. To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`. P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4 Time taken to get face info-- : -6.44 seconds Time taken to draw kps-- : -0.14 seconds Time taken to enhance face region-- : -0.01 seconds 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:02<00:25, 2.80s/it] 20%|██ | 2/10 [00:03<00:12, 1.55s/it] 30%|███ | 3/10 [00:04<00:08, 1.16s/it] 40%|████ | 4/10 [00:04<00:05, 1.04it/s] 50%|█████ | 5/10 [00:05<00:04, 1.16it/s] 60%|██████ | 6/10 [00:06<00:03, 1.26it/s] 70%|███████ | 7/10 [00:06<00:02, 1.32it/s] 80%|████████ | 8/10 [00:07<00:01, 1.37it/s] 90%|█████████ | 9/10 [00:08<00:00, 1.40it/s] 100%|██████████| 10/10 [00:08<00:00, 1.43it/s] 100%|██████████| 10/10 [00:08<00:00, 1.13it/s] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/peft/tuners/lora/layer.py:595: UserWarning: Already unmerged. Nothing to do. warnings.warn("Already unmerged. Nothing to do.") /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/peft/tuners/lora/layer.py:256: UserWarning: Already unmerged. Nothing to do. warnings.warn("Already unmerged. Nothing to do.")
Prediction
usamaehsan/instant-id-x-juggernaut:0e2f102f87cf9a0c119af7bc025607d55eb83f342552c2029a61b095171d776aIDfpg7zutbowyja6b3zqo6zfa7ryStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1051
- height
- 1040
- prompt
- This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait
- get_age
- max_side
- 1024
- min_side
- 1024
- scheduler
- K_EULER_ANCESTRAL
- use_gfpgan
- resize_image
- guidance_scale
- 3.5
- negative_prompt
- ip_adapter_scale
- 1
- enhance_face_region
- num_inference_steps
- 10
- use_controlnet_pose
- micro_detail_lora_weight
- 0
- controlnet_conditioning_scale
- 0.6
- pose_controlnet_conditioning_scale
- 0.8
{ "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": false, "max_side": 1024, "min_side": 1024, "scheduler": "K_EULER_ANCESTRAL", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "use_controlnet_pose": false, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "usamaehsan/instant-id-x-juggernaut:0e2f102f87cf9a0c119af7bc025607d55eb83f342552c2029a61b095171d776a", { input: { image: "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", width: 1051, height: 1040, prompt: "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", get_age: false, max_side: 1024, min_side: 1024, scheduler: "K_EULER_ANCESTRAL", use_gfpgan: false, resize_image: true, guidance_scale: 3.5, negative_prompt: "", ip_adapter_scale: 1, enhance_face_region: true, num_inference_steps: 10, use_controlnet_pose: false, micro_detail_lora_weight: 0, controlnet_conditioning_scale: 0.6, pose_controlnet_conditioning_scale: 0.8 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "usamaehsan/instant-id-x-juggernaut:0e2f102f87cf9a0c119af7bc025607d55eb83f342552c2029a61b095171d776a", input={ "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": False, "max_side": 1024, "min_side": 1024, "scheduler": "K_EULER_ANCESTRAL", "use_gfpgan": False, "resize_image": True, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": True, "num_inference_steps": 10, "use_controlnet_pose": False, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "usamaehsan/instant-id-x-juggernaut:0e2f102f87cf9a0c119af7bc025607d55eb83f342552c2029a61b095171d776a", "input": { "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": false, "max_side": 1024, "min_side": 1024, "scheduler": "K_EULER_ANCESTRAL", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "use_controlnet_pose": false, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-02-23T00:00:38.165273Z", "created_at": "2024-02-22T23:58:20.353981Z", "data_removed": false, "error": null, "id": "fpg7zutbowyja6b3zqo6zfa7ry", "input": { "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": false, "max_side": 1024, "min_side": 1024, "scheduler": "K_EULER_ANCESTRAL", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "use_controlnet_pose": false, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 }, "logs": "Time taken to resize image-- : -0.01 seconds\n/root/.pyenv/versions/3.11.8/lib/python3.11/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.\nTo use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.\nP = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4\nTime taken to get face info-- : -8.28 seconds\nTime taken to enhance face region-- : -0.02 seconds\nTime taken to draw kps-- : -0.05 seconds\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:02, 3.50it/s]\n 20%|██ | 2/10 [00:00<00:02, 3.48it/s]\n 30%|███ | 3/10 [00:00<00:02, 3.37it/s]\n 40%|████ | 4/10 [00:01<00:01, 3.29it/s]\n 50%|█████ | 5/10 [00:01<00:01, 3.27it/s]\n 60%|██████ | 6/10 [00:01<00:01, 3.26it/s]\n 70%|███████ | 7/10 [00:02<00:00, 3.24it/s]\n 80%|████████ | 8/10 [00:02<00:00, 3.23it/s]\n 90%|█████████ | 9/10 [00:02<00:00, 3.23it/s]\n100%|██████████| 10/10 [00:03<00:00, 3.22it/s]\n100%|██████████| 10/10 [00:03<00:00, 3.27it/s]", "metrics": { "predict_time": 26.578611, "total_time": 137.811292 }, "output": "https://replicate.delivery/pbxt/6LTP9yQxKe1fh0cyrqi9YCkByDYaUWAMHIJpU566TxPaIZZSA/result.jpg", "started_at": "2024-02-23T00:00:11.586662Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fpg7zutbowyja6b3zqo6zfa7ry", "cancel": "https://api.replicate.com/v1/predictions/fpg7zutbowyja6b3zqo6zfa7ry/cancel" }, "version": "0e2f102f87cf9a0c119af7bc025607d55eb83f342552c2029a61b095171d776a" }
Generated inTime taken to resize image-- : -0.01 seconds /root/.pyenv/versions/3.11.8/lib/python3.11/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions. To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`. P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4 Time taken to get face info-- : -8.28 seconds Time taken to enhance face region-- : -0.02 seconds Time taken to draw kps-- : -0.05 seconds 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:02, 3.50it/s] 20%|██ | 2/10 [00:00<00:02, 3.48it/s] 30%|███ | 3/10 [00:00<00:02, 3.37it/s] 40%|████ | 4/10 [00:01<00:01, 3.29it/s] 50%|█████ | 5/10 [00:01<00:01, 3.27it/s] 60%|██████ | 6/10 [00:01<00:01, 3.26it/s] 70%|███████ | 7/10 [00:02<00:00, 3.24it/s] 80%|████████ | 8/10 [00:02<00:00, 3.23it/s] 90%|█████████ | 9/10 [00:02<00:00, 3.23it/s] 100%|██████████| 10/10 [00:03<00:00, 3.22it/s] 100%|██████████| 10/10 [00:03<00:00, 3.27it/s]
Prediction
usamaehsan/instant-id-x-juggernaut:3e546b3409dfa492b72562f368da5381515381785460f441efa7ce1a23260aefID5d4ytm3ba5v6h53nvmf5l2ggiaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 640
- height
- 640
- prompt
- This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait
- get_age
- max_side
- 1024
- min_side
- 1024
- scheduler
- K_EULER_ANCESTRAL
- use_gfpgan
- resize_image
- guidance_scale
- 3.5
- negative_prompt
- ip_adapter_scale
- 1
- enhance_face_region
- num_inference_steps
- 10
- use_controlnet_pose
- lightning_lora_weight
- 0
- micro_detail_lora_weight
- 0
- controlnet_conditioning_scale
- 0.6
- pose_controlnet_conditioning_scale
- 0.8
{ "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 640, "height": 640, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": false, "max_side": 1024, "min_side": 1024, "scheduler": "K_EULER_ANCESTRAL", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": false, "num_inference_steps": 10, "use_controlnet_pose": false, "lightning_lora_weight": 0, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "usamaehsan/instant-id-x-juggernaut:3e546b3409dfa492b72562f368da5381515381785460f441efa7ce1a23260aef", { input: { image: "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", width: 640, height: 640, prompt: "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", get_age: false, max_side: 1024, min_side: 1024, scheduler: "K_EULER_ANCESTRAL", use_gfpgan: false, resize_image: true, guidance_scale: 3.5, negative_prompt: "", ip_adapter_scale: 1, enhance_face_region: false, num_inference_steps: 10, use_controlnet_pose: false, lightning_lora_weight: 0, micro_detail_lora_weight: 0, controlnet_conditioning_scale: 0.6, pose_controlnet_conditioning_scale: 0.8 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "usamaehsan/instant-id-x-juggernaut:3e546b3409dfa492b72562f368da5381515381785460f441efa7ce1a23260aef", input={ "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 640, "height": 640, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": False, "max_side": 1024, "min_side": 1024, "scheduler": "K_EULER_ANCESTRAL", "use_gfpgan": False, "resize_image": True, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": False, "num_inference_steps": 10, "use_controlnet_pose": False, "lightning_lora_weight": 0, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "usamaehsan/instant-id-x-juggernaut:3e546b3409dfa492b72562f368da5381515381785460f441efa7ce1a23260aef", "input": { "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 640, "height": 640, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": false, "max_side": 1024, "min_side": 1024, "scheduler": "K_EULER_ANCESTRAL", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": false, "num_inference_steps": 10, "use_controlnet_pose": false, "lightning_lora_weight": 0, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-02-23T00:31:28.892727Z", "created_at": "2024-02-23T00:31:19.055522Z", "data_removed": false, "error": null, "id": "5d4ytm3ba5v6h53nvmf5l2ggia", "input": { "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 640, "height": 640, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": false, "max_side": 1024, "min_side": 1024, "scheduler": "K_EULER_ANCESTRAL", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": false, "num_inference_steps": 10, "use_controlnet_pose": false, "lightning_lora_weight": 0, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 }, "logs": "Time taken to resize image-- : -0.01 seconds\nTime taken to get face info-- : -4.58 seconds\nTime taken to draw kps-- : -0.14 seconds\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:02, 4.24it/s]\n 20%|██ | 2/10 [00:00<00:02, 3.62it/s]\n 30%|███ | 3/10 [00:00<00:02, 3.43it/s]\n 40%|████ | 4/10 [00:01<00:01, 3.35it/s]\n 50%|█████ | 5/10 [00:01<00:01, 3.31it/s]\n 60%|██████ | 6/10 [00:01<00:01, 3.29it/s]\n 70%|███████ | 7/10 [00:02<00:00, 3.28it/s]\n 80%|████████ | 8/10 [00:02<00:00, 3.27it/s]\n 90%|█████████ | 9/10 [00:02<00:00, 3.26it/s]\n100%|██████████| 10/10 [00:03<00:00, 3.24it/s]\n100%|██████████| 10/10 [00:03<00:00, 3.32it/s]", "metrics": { "predict_time": 9.736544, "total_time": 9.837205 }, "output": "https://replicate.delivery/pbxt/jCG6hRYdesXLLCfVye0uim4DLZn1W5rq7A4J1q839Y2BLzykA/result.jpg", "started_at": "2024-02-23T00:31:19.156183Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5d4ytm3ba5v6h53nvmf5l2ggia", "cancel": "https://api.replicate.com/v1/predictions/5d4ytm3ba5v6h53nvmf5l2ggia/cancel" }, "version": "3e546b3409dfa492b72562f368da5381515381785460f441efa7ce1a23260aef" }
Generated inTime taken to resize image-- : -0.01 seconds Time taken to get face info-- : -4.58 seconds Time taken to draw kps-- : -0.14 seconds 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:02, 4.24it/s] 20%|██ | 2/10 [00:00<00:02, 3.62it/s] 30%|███ | 3/10 [00:00<00:02, 3.43it/s] 40%|████ | 4/10 [00:01<00:01, 3.35it/s] 50%|█████ | 5/10 [00:01<00:01, 3.31it/s] 60%|██████ | 6/10 [00:01<00:01, 3.29it/s] 70%|███████ | 7/10 [00:02<00:00, 3.28it/s] 80%|████████ | 8/10 [00:02<00:00, 3.27it/s] 90%|█████████ | 9/10 [00:02<00:00, 3.26it/s] 100%|██████████| 10/10 [00:03<00:00, 3.24it/s] 100%|██████████| 10/10 [00:03<00:00, 3.32it/s]
Prediction
usamaehsan/instant-id-x-juggernaut:60459a4714c3615e15fca0284c90da146133e8abdeb40f3cc1ef08b2a85ceb6cIDcrkwxqdbkyol6s53mfm2ak6ejqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1051
- height
- 1040
- prompt
- This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait
- get_age
- max_side
- 1280
- min_side
- 1024
- scheduler
- UniPCMultistep
- use_gfpgan
- resize_image
- guidance_scale
- 3.5
- negative_prompt
- ip_adapter_scale
- 1
- enhance_face_region
- num_inference_steps
- 10
- use_controlnet_pose
- lightning_lora_weight
- 1
- micro_detail_lora_weight
- 0
- controlnet_conditioning_scale
- 0.6
- pose_controlnet_conditioning_scale
- 0.8
{ "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": true, "max_side": 1280, "min_side": 1024, "scheduler": "UniPCMultistep", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "use_controlnet_pose": true, "lightning_lora_weight": 1, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "usamaehsan/instant-id-x-juggernaut:60459a4714c3615e15fca0284c90da146133e8abdeb40f3cc1ef08b2a85ceb6c", { input: { image: "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", width: 1051, height: 1040, prompt: "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", get_age: true, max_side: 1280, min_side: 1024, scheduler: "UniPCMultistep", use_gfpgan: false, resize_image: true, guidance_scale: 3.5, negative_prompt: "", ip_adapter_scale: 1, enhance_face_region: true, num_inference_steps: 10, use_controlnet_pose: true, lightning_lora_weight: 1, micro_detail_lora_weight: 0, controlnet_conditioning_scale: 0.6, pose_controlnet_conditioning_scale: 0.8 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "usamaehsan/instant-id-x-juggernaut:60459a4714c3615e15fca0284c90da146133e8abdeb40f3cc1ef08b2a85ceb6c", input={ "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": True, "max_side": 1280, "min_side": 1024, "scheduler": "UniPCMultistep", "use_gfpgan": False, "resize_image": True, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": True, "num_inference_steps": 10, "use_controlnet_pose": True, "lightning_lora_weight": 1, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run usamaehsan/instant-id-x-juggernaut using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "usamaehsan/instant-id-x-juggernaut:60459a4714c3615e15fca0284c90da146133e8abdeb40f3cc1ef08b2a85ceb6c", "input": { "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": true, "max_side": 1280, "min_side": 1024, "scheduler": "UniPCMultistep", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "use_controlnet_pose": true, "lightning_lora_weight": 1, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-08T07:23:27.318575Z", "created_at": "2024-03-08T07:16:57.872473Z", "data_removed": false, "error": null, "id": "crkwxqdbkyol6s53mfm2ak6ejq", "input": { "image": "https://replicate.delivery/pbxt/KKhSlVNlQj10hguaYY8wbGgdaxvVBMQmm9Lw6a1PXiRrGCwj/53894527.jpg", "width": 1051, "height": 1040, "prompt": "This is Eric Draven The Crow Movie 1994 version, Brandon Lee, realistic, 8k, the crow bird, portrait", "get_age": true, "max_side": 1280, "min_side": 1024, "scheduler": "UniPCMultistep", "use_gfpgan": false, "resize_image": true, "guidance_scale": 3.5, "negative_prompt": "", "ip_adapter_scale": 1, "enhance_face_region": true, "num_inference_steps": 10, "use_controlnet_pose": true, "lightning_lora_weight": 1, "micro_detail_lora_weight": 0, "controlnet_conditioning_scale": 0.6, "pose_controlnet_conditioning_scale": 0.8 }, "logs": "[!] Resizing output to 1051x1040\nset det-size: (1051, 1040)\nwarning: det_size is already set in detection model, ignore\nTime taken to resize image-- : -0.04 seconds\n/root/.pyenv/versions/3.11.8/lib/python3.11/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.\nTo use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.\nP = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4\nTime taken to get face info-- : -4.69 seconds\nTime taken to enhance face region-- : -0.09 seconds\nTime taken to draw kps-- : -0.06 seconds\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:05, 1.68it/s]\n 20%|██ | 2/10 [00:01<00:04, 1.81it/s]\n 30%|███ | 3/10 [00:01<00:04, 1.68it/s]\n 40%|████ | 4/10 [00:02<00:03, 1.77it/s]\n 50%|█████ | 5/10 [00:02<00:02, 1.82it/s]\n 60%|██████ | 6/10 [00:03<00:02, 1.85it/s]\n 70%|███████ | 7/10 [00:03<00:01, 1.88it/s]\n 80%|████████ | 8/10 [00:04<00:01, 1.89it/s]\n 90%|█████████ | 9/10 [00:04<00:00, 1.90it/s]\n100%|██████████| 10/10 [00:05<00:00, 1.91it/s]\n100%|██████████| 10/10 [00:05<00:00, 1.85it/s]", "metrics": { "predict_time": 13.790888, "total_time": 389.446102 }, "output": "https://replicate.delivery/pbxt/ONpHgyo3INpffESDToUravdgGFdo7gxSXe33nOwP6Fqd3N8kA/result.jpg", "started_at": "2024-03-08T07:23:13.527687Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/crkwxqdbkyol6s53mfm2ak6ejq", "cancel": "https://api.replicate.com/v1/predictions/crkwxqdbkyol6s53mfm2ak6ejq/cancel" }, "version": "60459a4714c3615e15fca0284c90da146133e8abdeb40f3cc1ef08b2a85ceb6c" }
Generated in[!] Resizing output to 1051x1040 set det-size: (1051, 1040) warning: det_size is already set in detection model, ignore Time taken to resize image-- : -0.04 seconds /root/.pyenv/versions/3.11.8/lib/python3.11/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions. To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`. P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4 Time taken to get face info-- : -4.69 seconds Time taken to enhance face region-- : -0.09 seconds Time taken to draw kps-- : -0.06 seconds 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:05, 1.68it/s] 20%|██ | 2/10 [00:01<00:04, 1.81it/s] 30%|███ | 3/10 [00:01<00:04, 1.68it/s] 40%|████ | 4/10 [00:02<00:03, 1.77it/s] 50%|█████ | 5/10 [00:02<00:02, 1.82it/s] 60%|██████ | 6/10 [00:03<00:02, 1.85it/s] 70%|███████ | 7/10 [00:03<00:01, 1.88it/s] 80%|████████ | 8/10 [00:04<00:01, 1.89it/s] 90%|█████████ | 9/10 [00:04<00:00, 1.90it/s] 100%|██████████| 10/10 [00:05<00:00, 1.91it/s] 100%|██████████| 10/10 [00:05<00:00, 1.85it/s]
Want to make some of these yourself?
Run this model