Run vcollos/pedro using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"vcollos/pedro:70fb2a10863495e25002c5c54f3721b8d636a6dfc2f6c82c4bc499332967d73d",
{
input: {
model: "dev",
prompt: "professional portrait of Pedro in a studio with a dark Blue suit, 35mm",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:console.log(output[0].url()); //=> "http://example.com"// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
Run vcollos/pedro using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"vcollos/pedro:70fb2a10863495e25002c5c54f3721b8d636a6dfc2f6c82c4bc499332967d73d",
input={
"model": "dev",
"prompt": "professional portrait of Pedro in a studio with a dark Blue suit, 35mm",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
# To access the file URL:print(output[0].url())
#=> "http://example.com"# To write the file to disk:withopen("my-image.png", "wb") as file:
file.write(output[0].read())