You're looking at a specific version of this model. Jump to the model overview.
vectradmin /sdxl-v:7924ac1e
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
1girl, masterpiece, best quality, sharp focus, highly detailed, dynamic lighting, vivid colors, texture detail, particle effects, subject-background isolation, storytelling elements, narrative flair, 16k, HDR
|
Input Prompt
|
neg_prompt |
string
|
deformed iris, deformed pupils, gaussian, noise, worst quality, lowres, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art, blur, blurry, grainy, morbid, ugly, asymmetrical, mutated, malformed, mutilated, poorly lit, bad shadow, draft, cropped out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, pixelated, soft focus, color fringing, overprocessed, oversharpened
|
Input Negative Prompt
|
width |
integer
(enum)
|
1024
Options: 512, 576, 640, 704, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1280, 1344, 1408, 1472, 1536 |
Width of Output Image
|
height |
integer
(enum)
|
1024
Options: 512, 576, 640, 704, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1280, 1344, 1408, 1472, 1536 |
Height of Output Image
|
num_outputs |
integer
|
1
Min: 1 Max: 4 |
Number of Images to Output
|
scheduler |
string
(enum)
|
DPMSolverMultistep
Options: LCM, DDIM, DPMSolverMultistep, K_EULER, K_EULER_ANCESTRAL, PNDM, KLMS |
Choose a Scheduler
|
num_inference_steps |
integer
|
40
Min: 1 Max: 65 |
Number of Denoising Steps
|
guidance_scale |
number
|
3.6
Min: 0.1 Max: 5 |
Scale for Classifier-free Guidance
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
|
use_lcm |
boolean
|
False
|
Whether to use LCM-LoRA, if using, suggested num_inference_steps 2-8, guidance_scale 1.0-2.0
|
ping_flag |
boolean
|
False
|
Check Status
|
Output schema
The shape of the response you’ll get when you run this model with an API.
{'items': {'format': 'uri', 'type': 'string'},
'title': 'Output',
'type': 'array'}