vkolagotla / bapubomma_ai
A LoRA fine tuned version of SDXL trained on late legendary Indian artist Bapu's art work
- Public
- 233 runs
-
L40S
- SDXL fine-tune
- GitHub
Prediction
vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ffIDqobqpadbssjafa35bxie5hl74qStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", { input: { width: 512, height: 512, prompt: "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", input={ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-17T06:54:16.698139Z", "created_at": "2023-12-17T06:54:00.120724Z", "data_removed": false, "error": null, "id": "qobqpadbssjafa35bxie5hl74q", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 11866\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1>, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces\ntxt2img mode\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:11, 8.65it/s]\n 2%|▏ | 2/100 [00:00<00:10, 9.02it/s]\n 3%|▎ | 3/100 [00:00<00:10, 9.13it/s]\n 4%|▍ | 4/100 [00:00<00:10, 9.23it/s]\n 5%|▌ | 5/100 [00:00<00:10, 9.14it/s]\n 6%|▌ | 6/100 [00:00<00:10, 9.24it/s]\n 7%|▋ | 7/100 [00:00<00:10, 9.28it/s]\n 8%|▊ | 8/100 [00:00<00:09, 9.23it/s]\n 9%|▉ | 9/100 [00:00<00:09, 9.17it/s]\n 10%|█ | 10/100 [00:01<00:09, 9.21it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.18it/s]\n 12%|█▏ | 12/100 [00:01<00:09, 9.20it/s]\n 13%|█▎ | 13/100 [00:01<00:09, 8.72it/s]\n 14%|█▍ | 14/100 [00:01<00:09, 8.92it/s]\n 15%|█▌ | 15/100 [00:01<00:09, 8.88it/s]\n 16%|█▌ | 16/100 [00:01<00:09, 8.82it/s]\n 17%|█▋ | 17/100 [00:01<00:09, 8.92it/s]\n 18%|█▊ | 18/100 [00:01<00:09, 8.85it/s]\n 19%|█▉ | 19/100 [00:02<00:09, 8.81it/s]\n 20%|██ | 20/100 [00:02<00:09, 8.83it/s]\n 21%|██ | 21/100 [00:02<00:08, 8.83it/s]\n 22%|██▏ | 22/100 [00:02<00:08, 8.89it/s]\n 23%|██▎ | 23/100 [00:02<00:08, 8.91it/s]\n 24%|██▍ | 24/100 [00:02<00:08, 9.08it/s]\n 25%|██▌ | 25/100 [00:02<00:08, 9.06it/s]\n 26%|██▌ | 26/100 [00:02<00:08, 9.03it/s]\n 27%|██▋ | 27/100 [00:02<00:08, 9.03it/s]\n 28%|██▊ | 28/100 [00:03<00:07, 9.17it/s]\n 29%|██▉ | 29/100 [00:03<00:07, 9.28it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.37it/s]\n 31%|███ | 31/100 [00:03<00:07, 9.25it/s]\n 32%|███▏ | 32/100 [00:03<00:07, 9.13it/s]\n 33%|███▎ | 33/100 [00:03<00:07, 9.07it/s]\n 34%|███▍ | 34/100 [00:03<00:07, 9.02it/s]\n 35%|███▌ | 35/100 [00:03<00:07, 8.95it/s]\n 36%|███▌ | 36/100 [00:03<00:07, 8.92it/s]\n 37%|███▋ | 37/100 [00:04<00:07, 8.93it/s]\n 38%|███▊ | 38/100 [00:04<00:06, 8.92it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 8.91it/s]\n 40%|████ | 40/100 [00:04<00:06, 8.93it/s]\n 41%|████ | 41/100 [00:04<00:06, 8.94it/s]\n 42%|████▏ | 42/100 [00:04<00:06, 8.94it/s]\n 43%|████▎ | 43/100 [00:04<00:06, 9.11it/s]\n 44%|████▍ | 44/100 [00:04<00:06, 9.14it/s]\n 45%|████▌ | 45/100 [00:04<00:05, 9.22it/s]\n 46%|████▌ | 46/100 [00:05<00:05, 9.32it/s]\n 47%|████▋ | 47/100 [00:05<00:05, 9.37it/s]\n 48%|████▊ | 48/100 [00:05<00:05, 9.41it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 9.28it/s]\n 50%|█████ | 50/100 [00:05<00:05, 9.14it/s]\n 51%|█████ | 51/100 [00:05<00:05, 9.05it/s]\n 52%|█████▏ | 52/100 [00:05<00:05, 9.01it/s]\n 53%|█████▎ | 53/100 [00:05<00:05, 8.93it/s]\n 54%|█████▍ | 54/100 [00:05<00:05, 8.92it/s]\n 55%|█████▌ | 55/100 [00:06<00:05, 8.92it/s]\n 56%|█████▌ | 56/100 [00:06<00:04, 8.91it/s]\n 57%|█████▋ | 57/100 [00:06<00:04, 8.90it/s]\n 58%|█████▊ | 58/100 [00:06<00:04, 8.91it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 8.88it/s]\n 60%|██████ | 60/100 [00:06<00:04, 8.90it/s]\n 61%|██████ | 61/100 [00:06<00:04, 8.89it/s]\n 62%|██████▏ | 62/100 [00:06<00:04, 8.89it/s]\n 63%|██████▎ | 63/100 [00:06<00:04, 8.86it/s]\n 64%|██████▍ | 64/100 [00:07<00:04, 8.87it/s]\n 65%|██████▌ | 65/100 [00:07<00:04, 8.62it/s]\n 66%|██████▌ | 66/100 [00:07<00:03, 8.64it/s]\n 67%|██████▋ | 67/100 [00:07<00:03, 8.65it/s]\n 68%|██████▊ | 68/100 [00:07<00:03, 8.72it/s]\n 69%|██████▉ | 69/100 [00:07<00:03, 8.75it/s]\n 70%|███████ | 70/100 [00:07<00:03, 8.79it/s]\n 71%|███████ | 71/100 [00:07<00:03, 8.79it/s]\n 72%|███████▏ | 72/100 [00:08<00:03, 8.90it/s]\n 73%|███████▎ | 73/100 [00:08<00:02, 9.02it/s]\n 74%|███████▍ | 74/100 [00:08<00:02, 8.94it/s]\n 75%|███████▌ | 75/100 [00:08<00:02, 8.79it/s]\n 76%|███████▌ | 76/100 [00:08<00:02, 8.57it/s]\n 77%|███████▋ | 77/100 [00:08<00:02, 8.59it/s]\n 78%|███████▊ | 78/100 [00:08<00:02, 8.76it/s]\n 79%|███████▉ | 79/100 [00:08<00:02, 8.82it/s]\n 80%|████████ | 80/100 [00:08<00:02, 8.90it/s]\n 81%|████████ | 81/100 [00:09<00:02, 8.86it/s]\n 82%|████████▏ | 82/100 [00:09<00:02, 8.75it/s]\n 83%|████████▎ | 83/100 [00:09<00:01, 8.80it/s]\n 84%|████████▍ | 84/100 [00:09<00:01, 8.83it/s]\n 85%|████████▌ | 85/100 [00:09<00:01, 8.84it/s]\n 86%|████████▌ | 86/100 [00:09<00:01, 8.91it/s]\n 87%|████████▋ | 87/100 [00:09<00:01, 8.88it/s]\n 88%|████████▊ | 88/100 [00:09<00:01, 9.01it/s]\n 89%|████████▉ | 89/100 [00:09<00:01, 9.10it/s]\n 90%|█████████ | 90/100 [00:10<00:01, 9.17it/s]\n 91%|█████████ | 91/100 [00:10<00:00, 9.24it/s]\n 92%|█████████▏| 92/100 [00:10<00:00, 9.20it/s]\n 93%|█████████▎| 93/100 [00:10<00:00, 9.11it/s]\n 94%|█████████▍| 94/100 [00:10<00:00, 9.09it/s]\n 95%|█████████▌| 95/100 [00:10<00:00, 9.06it/s]\n 96%|█████████▌| 96/100 [00:10<00:00, 9.05it/s]\n 97%|█████████▋| 97/100 [00:10<00:00, 9.01it/s]\n 98%|█████████▊| 98/100 [00:10<00:00, 8.99it/s]\n 99%|█████████▉| 99/100 [00:11<00:00, 9.00it/s]\n100%|██████████| 100/100 [00:11<00:00, 9.02it/s]\n100%|██████████| 100/100 [00:11<00:00, 8.98it/s]", "metrics": { "predict_time": 13.169717, "total_time": 16.577415 }, "output": [ "https://replicate.delivery/pbxt/w5PLp5rH55ayPF4g1vsbPScm2XrJ8hYPGYvhePrNeB3X0EDSA/out-0.png" ], "started_at": "2023-12-17T06:54:03.528422Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qobqpadbssjafa35bxie5hl74q", "cancel": "https://api.replicate.com/v1/predictions/qobqpadbssjafa35bxie5hl74q/cancel" }, "version": "572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff" }
Generated inUsing seed: 11866 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: <s0><s1>, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces txt2img mode 0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:11, 8.65it/s] 2%|▏ | 2/100 [00:00<00:10, 9.02it/s] 3%|▎ | 3/100 [00:00<00:10, 9.13it/s] 4%|▍ | 4/100 [00:00<00:10, 9.23it/s] 5%|▌ | 5/100 [00:00<00:10, 9.14it/s] 6%|▌ | 6/100 [00:00<00:10, 9.24it/s] 7%|▋ | 7/100 [00:00<00:10, 9.28it/s] 8%|▊ | 8/100 [00:00<00:09, 9.23it/s] 9%|▉ | 9/100 [00:00<00:09, 9.17it/s] 10%|█ | 10/100 [00:01<00:09, 9.21it/s] 11%|█ | 11/100 [00:01<00:09, 9.18it/s] 12%|█▏ | 12/100 [00:01<00:09, 9.20it/s] 13%|█▎ | 13/100 [00:01<00:09, 8.72it/s] 14%|█▍ | 14/100 [00:01<00:09, 8.92it/s] 15%|█▌ | 15/100 [00:01<00:09, 8.88it/s] 16%|█▌ | 16/100 [00:01<00:09, 8.82it/s] 17%|█▋ | 17/100 [00:01<00:09, 8.92it/s] 18%|█▊ | 18/100 [00:01<00:09, 8.85it/s] 19%|█▉ | 19/100 [00:02<00:09, 8.81it/s] 20%|██ | 20/100 [00:02<00:09, 8.83it/s] 21%|██ | 21/100 [00:02<00:08, 8.83it/s] 22%|██▏ | 22/100 [00:02<00:08, 8.89it/s] 23%|██▎ | 23/100 [00:02<00:08, 8.91it/s] 24%|██▍ | 24/100 [00:02<00:08, 9.08it/s] 25%|██▌ | 25/100 [00:02<00:08, 9.06it/s] 26%|██▌ | 26/100 [00:02<00:08, 9.03it/s] 27%|██▋ | 27/100 [00:02<00:08, 9.03it/s] 28%|██▊ | 28/100 [00:03<00:07, 9.17it/s] 29%|██▉ | 29/100 [00:03<00:07, 9.28it/s] 30%|███ | 30/100 [00:03<00:07, 9.37it/s] 31%|███ | 31/100 [00:03<00:07, 9.25it/s] 32%|███▏ | 32/100 [00:03<00:07, 9.13it/s] 33%|███▎ | 33/100 [00:03<00:07, 9.07it/s] 34%|███▍ | 34/100 [00:03<00:07, 9.02it/s] 35%|███▌ | 35/100 [00:03<00:07, 8.95it/s] 36%|███▌ | 36/100 [00:03<00:07, 8.92it/s] 37%|███▋ | 37/100 [00:04<00:07, 8.93it/s] 38%|███▊ | 38/100 [00:04<00:06, 8.92it/s] 39%|███▉ | 39/100 [00:04<00:06, 8.91it/s] 40%|████ | 40/100 [00:04<00:06, 8.93it/s] 41%|████ | 41/100 [00:04<00:06, 8.94it/s] 42%|████▏ | 42/100 [00:04<00:06, 8.94it/s] 43%|████▎ | 43/100 [00:04<00:06, 9.11it/s] 44%|████▍ | 44/100 [00:04<00:06, 9.14it/s] 45%|████▌ | 45/100 [00:04<00:05, 9.22it/s] 46%|████▌ | 46/100 [00:05<00:05, 9.32it/s] 47%|████▋ | 47/100 [00:05<00:05, 9.37it/s] 48%|████▊ | 48/100 [00:05<00:05, 9.41it/s] 49%|████▉ | 49/100 [00:05<00:05, 9.28it/s] 50%|█████ | 50/100 [00:05<00:05, 9.14it/s] 51%|█████ | 51/100 [00:05<00:05, 9.05it/s] 52%|█████▏ | 52/100 [00:05<00:05, 9.01it/s] 53%|█████▎ | 53/100 [00:05<00:05, 8.93it/s] 54%|█████▍ | 54/100 [00:05<00:05, 8.92it/s] 55%|█████▌ | 55/100 [00:06<00:05, 8.92it/s] 56%|█████▌ | 56/100 [00:06<00:04, 8.91it/s] 57%|█████▋ | 57/100 [00:06<00:04, 8.90it/s] 58%|█████▊ | 58/100 [00:06<00:04, 8.91it/s] 59%|█████▉ | 59/100 [00:06<00:04, 8.88it/s] 60%|██████ | 60/100 [00:06<00:04, 8.90it/s] 61%|██████ | 61/100 [00:06<00:04, 8.89it/s] 62%|██████▏ | 62/100 [00:06<00:04, 8.89it/s] 63%|██████▎ | 63/100 [00:06<00:04, 8.86it/s] 64%|██████▍ | 64/100 [00:07<00:04, 8.87it/s] 65%|██████▌ | 65/100 [00:07<00:04, 8.62it/s] 66%|██████▌ | 66/100 [00:07<00:03, 8.64it/s] 67%|██████▋ | 67/100 [00:07<00:03, 8.65it/s] 68%|██████▊ | 68/100 [00:07<00:03, 8.72it/s] 69%|██████▉ | 69/100 [00:07<00:03, 8.75it/s] 70%|███████ | 70/100 [00:07<00:03, 8.79it/s] 71%|███████ | 71/100 [00:07<00:03, 8.79it/s] 72%|███████▏ | 72/100 [00:08<00:03, 8.90it/s] 73%|███████▎ | 73/100 [00:08<00:02, 9.02it/s] 74%|███████▍ | 74/100 [00:08<00:02, 8.94it/s] 75%|███████▌ | 75/100 [00:08<00:02, 8.79it/s] 76%|███████▌ | 76/100 [00:08<00:02, 8.57it/s] 77%|███████▋ | 77/100 [00:08<00:02, 8.59it/s] 78%|███████▊ | 78/100 [00:08<00:02, 8.76it/s] 79%|███████▉ | 79/100 [00:08<00:02, 8.82it/s] 80%|████████ | 80/100 [00:08<00:02, 8.90it/s] 81%|████████ | 81/100 [00:09<00:02, 8.86it/s] 82%|████████▏ | 82/100 [00:09<00:02, 8.75it/s] 83%|████████▎ | 83/100 [00:09<00:01, 8.80it/s] 84%|████████▍ | 84/100 [00:09<00:01, 8.83it/s] 85%|████████▌ | 85/100 [00:09<00:01, 8.84it/s] 86%|████████▌ | 86/100 [00:09<00:01, 8.91it/s] 87%|████████▋ | 87/100 [00:09<00:01, 8.88it/s] 88%|████████▊ | 88/100 [00:09<00:01, 9.01it/s] 89%|████████▉ | 89/100 [00:09<00:01, 9.10it/s] 90%|█████████ | 90/100 [00:10<00:01, 9.17it/s] 91%|█████████ | 91/100 [00:10<00:00, 9.24it/s] 92%|█████████▏| 92/100 [00:10<00:00, 9.20it/s] 93%|█████████▎| 93/100 [00:10<00:00, 9.11it/s] 94%|█████████▍| 94/100 [00:10<00:00, 9.09it/s] 95%|█████████▌| 95/100 [00:10<00:00, 9.06it/s] 96%|█████████▌| 96/100 [00:10<00:00, 9.05it/s] 97%|█████████▋| 97/100 [00:10<00:00, 9.01it/s] 98%|█████████▊| 98/100 [00:10<00:00, 8.99it/s] 99%|█████████▉| 99/100 [00:11<00:00, 9.00it/s] 100%|██████████| 100/100 [00:11<00:00, 9.02it/s] 100%|██████████| 100/100 [00:11<00:00, 8.98it/s]
Prediction
vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ffIDbuqbh4db7zolavtkrvjjuzgzuaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- bapubomma, artistic illustration, two sisters walking together in a beautiful south Swiss village, beautiful village, river, clear faces
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two sisters walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", { input: { width: 512, height: 512, prompt: "bapubomma, artistic illustration, two sisters walking together in a beautiful south Swiss village, beautiful village, river, clear faces", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", input={ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two sisters walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two sisters walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-17T06:54:46.697713Z", "created_at": "2023-12-17T06:54:32.502020Z", "data_removed": false, "error": null, "id": "buqbh4db7zolavtkrvjjuzgzua", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two sisters walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 37410\nskipping loading .. weights already loaded\nPrompt: <s0><s1>, artistic illustration, two sisters walking together in a beautiful south Swiss village, beautiful village, river, clear faces\ntxt2img mode\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:10, 9.10it/s]\n 2%|▏ | 2/100 [00:00<00:10, 9.17it/s]\n 3%|▎ | 3/100 [00:00<00:10, 9.21it/s]\n 4%|▍ | 4/100 [00:00<00:10, 9.28it/s]\n 5%|▌ | 5/100 [00:00<00:10, 8.93it/s]\n 6%|▌ | 6/100 [00:00<00:10, 8.91it/s]\n 7%|▋ | 7/100 [00:00<00:10, 8.95it/s]\n 8%|▊ | 8/100 [00:00<00:10, 8.96it/s]\n 9%|▉ | 9/100 [00:00<00:10, 9.08it/s]\n 10%|█ | 10/100 [00:01<00:09, 9.16it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.27it/s]\n 12%|█▏ | 12/100 [00:01<00:09, 9.30it/s]\n 13%|█▎ | 13/100 [00:01<00:09, 9.33it/s]\n 14%|█▍ | 14/100 [00:01<00:09, 9.33it/s]\n 15%|█▌ | 15/100 [00:01<00:09, 9.34it/s]\n 16%|█▌ | 16/100 [00:01<00:08, 9.39it/s]\n 17%|█▋ | 17/100 [00:01<00:08, 9.37it/s]\n 18%|█▊ | 18/100 [00:01<00:08, 9.40it/s]\n 19%|█▉ | 19/100 [00:02<00:08, 9.33it/s]\n 20%|██ | 20/100 [00:02<00:08, 9.28it/s]\n 21%|██ | 21/100 [00:02<00:08, 9.29it/s]\n 22%|██▏ | 22/100 [00:02<00:08, 9.35it/s]\n 23%|██▎ | 23/100 [00:02<00:08, 9.25it/s]\n 24%|██▍ | 24/100 [00:02<00:08, 9.25it/s]\n 25%|██▌ | 25/100 [00:02<00:08, 9.33it/s]\n 26%|██▌ | 26/100 [00:02<00:07, 9.31it/s]\n 27%|██▋ | 27/100 [00:02<00:07, 9.22it/s]\n 28%|██▊ | 28/100 [00:03<00:07, 9.13it/s]\n 29%|██▉ | 29/100 [00:03<00:07, 9.25it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.26it/s]\n 31%|███ | 31/100 [00:03<00:07, 9.27it/s]\n 32%|███▏ | 32/100 [00:03<00:07, 9.33it/s]\n 33%|███▎ | 33/100 [00:03<00:07, 9.28it/s]\n 34%|███▍ | 34/100 [00:03<00:07, 9.27it/s]\n 35%|███▌ | 35/100 [00:03<00:06, 9.31it/s]\n 36%|███▌ | 36/100 [00:03<00:06, 9.31it/s]\n 37%|███▋ | 37/100 [00:03<00:06, 9.35it/s]\n 38%|███▊ | 38/100 [00:04<00:06, 9.34it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 9.37it/s]\n 40%|████ | 40/100 [00:04<00:06, 9.37it/s]\n 41%|████ | 41/100 [00:04<00:06, 9.36it/s]\n 42%|████▏ | 42/100 [00:04<00:06, 9.23it/s]\n 43%|████▎ | 43/100 [00:04<00:06, 9.09it/s]\n 44%|████▍ | 44/100 [00:04<00:06, 9.05it/s]\n 45%|████▌ | 45/100 [00:04<00:06, 9.02it/s]\n 46%|████▌ | 46/100 [00:04<00:05, 9.17it/s]\n 47%|████▋ | 47/100 [00:05<00:05, 9.22it/s]\n 48%|████▊ | 48/100 [00:05<00:05, 9.26it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 9.30it/s]\n 50%|█████ | 50/100 [00:05<00:05, 9.36it/s]\n 51%|█████ | 51/100 [00:05<00:05, 9.40it/s]\n 52%|█████▏ | 52/100 [00:05<00:05, 9.33it/s]\n 53%|█████▎ | 53/100 [00:05<00:05, 9.32it/s]\n 54%|█████▍ | 54/100 [00:05<00:04, 9.34it/s]\n 55%|█████▌ | 55/100 [00:05<00:04, 9.34it/s]\n 56%|█████▌ | 56/100 [00:06<00:04, 9.33it/s]\n 57%|█████▋ | 57/100 [00:06<00:04, 9.30it/s]\n 58%|█████▊ | 58/100 [00:06<00:04, 9.30it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 9.33it/s]\n 60%|██████ | 60/100 [00:06<00:04, 9.22it/s]\n 61%|██████ | 61/100 [00:06<00:04, 9.22it/s]\n 62%|██████▏ | 62/100 [00:06<00:04, 9.27it/s]\n 63%|██████▎ | 63/100 [00:06<00:03, 9.30it/s]\n 64%|██████▍ | 64/100 [00:06<00:03, 9.33it/s]\n 65%|██████▌ | 65/100 [00:07<00:03, 9.31it/s]\n 66%|██████▌ | 66/100 [00:07<00:03, 9.24it/s]\n 67%|██████▋ | 67/100 [00:07<00:03, 8.94it/s]\n 68%|██████▊ | 68/100 [00:07<00:03, 8.99it/s]\n 69%|██████▉ | 69/100 [00:07<00:03, 8.67it/s]\n 70%|███████ | 70/100 [00:07<00:03, 8.69it/s]\n 71%|███████ | 71/100 [00:07<00:03, 8.74it/s]\n 72%|███████▏ | 72/100 [00:07<00:03, 8.77it/s]\n 73%|███████▎ | 73/100 [00:07<00:03, 8.50it/s]\n 74%|███████▍ | 74/100 [00:08<00:03, 8.63it/s]\n 75%|███████▌ | 75/100 [00:08<00:02, 8.69it/s]\n 76%|███████▌ | 76/100 [00:08<00:02, 8.68it/s]\n 77%|███████▋ | 77/100 [00:08<00:02, 8.78it/s]\n 78%|███████▊ | 78/100 [00:08<00:02, 8.94it/s]\n 79%|███████▉ | 79/100 [00:08<00:02, 9.10it/s]\n 80%|████████ | 80/100 [00:08<00:02, 9.16it/s]\n 81%|████████ | 81/100 [00:08<00:02, 9.28it/s]\n 82%|████████▏ | 82/100 [00:08<00:01, 9.34it/s]\n 83%|████████▎ | 83/100 [00:09<00:01, 9.35it/s]\n 84%|████████▍ | 84/100 [00:09<00:01, 9.40it/s]\n 85%|████████▌ | 85/100 [00:09<00:01, 9.30it/s]\n 86%|████████▌ | 86/100 [00:09<00:01, 9.34it/s]\n 87%|████████▋ | 87/100 [00:09<00:01, 9.40it/s]\n 88%|████████▊ | 88/100 [00:09<00:01, 9.43it/s]\n 89%|████████▉ | 89/100 [00:09<00:01, 9.46it/s]\n 90%|█████████ | 90/100 [00:09<00:01, 9.50it/s]\n 91%|█████████ | 91/100 [00:09<00:00, 9.50it/s]\n 92%|█████████▏| 92/100 [00:09<00:00, 9.55it/s]\n 93%|█████████▎| 93/100 [00:10<00:00, 9.58it/s]\n 94%|█████████▍| 94/100 [00:10<00:00, 9.59it/s]\n 95%|█████████▌| 95/100 [00:10<00:00, 9.57it/s]\n 96%|█████████▌| 96/100 [00:10<00:00, 9.56it/s]\n 97%|█████████▋| 97/100 [00:10<00:00, 9.53it/s]\n 98%|█████████▊| 98/100 [00:10<00:00, 9.49it/s]\n 99%|█████████▉| 99/100 [00:10<00:00, 9.48it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.50it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.24it/s]", "metrics": { "predict_time": 12.451853, "total_time": 14.195693 }, "output": [ "https://replicate.delivery/pbxt/VNXB9EIAnGYVBdTfZ1RxKodQQ9cEeeN9ELJS83Eno1TqpJGkA/out-0.png" ], "started_at": "2023-12-17T06:54:34.245860Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/buqbh4db7zolavtkrvjjuzgzua", "cancel": "https://api.replicate.com/v1/predictions/buqbh4db7zolavtkrvjjuzgzua/cancel" }, "version": "572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff" }
Generated inUsing seed: 37410 skipping loading .. weights already loaded Prompt: <s0><s1>, artistic illustration, two sisters walking together in a beautiful south Swiss village, beautiful village, river, clear faces txt2img mode 0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:10, 9.10it/s] 2%|▏ | 2/100 [00:00<00:10, 9.17it/s] 3%|▎ | 3/100 [00:00<00:10, 9.21it/s] 4%|▍ | 4/100 [00:00<00:10, 9.28it/s] 5%|▌ | 5/100 [00:00<00:10, 8.93it/s] 6%|▌ | 6/100 [00:00<00:10, 8.91it/s] 7%|▋ | 7/100 [00:00<00:10, 8.95it/s] 8%|▊ | 8/100 [00:00<00:10, 8.96it/s] 9%|▉ | 9/100 [00:00<00:10, 9.08it/s] 10%|█ | 10/100 [00:01<00:09, 9.16it/s] 11%|█ | 11/100 [00:01<00:09, 9.27it/s] 12%|█▏ | 12/100 [00:01<00:09, 9.30it/s] 13%|█▎ | 13/100 [00:01<00:09, 9.33it/s] 14%|█▍ | 14/100 [00:01<00:09, 9.33it/s] 15%|█▌ | 15/100 [00:01<00:09, 9.34it/s] 16%|█▌ | 16/100 [00:01<00:08, 9.39it/s] 17%|█▋ | 17/100 [00:01<00:08, 9.37it/s] 18%|█▊ | 18/100 [00:01<00:08, 9.40it/s] 19%|█▉ | 19/100 [00:02<00:08, 9.33it/s] 20%|██ | 20/100 [00:02<00:08, 9.28it/s] 21%|██ | 21/100 [00:02<00:08, 9.29it/s] 22%|██▏ | 22/100 [00:02<00:08, 9.35it/s] 23%|██▎ | 23/100 [00:02<00:08, 9.25it/s] 24%|██▍ | 24/100 [00:02<00:08, 9.25it/s] 25%|██▌ | 25/100 [00:02<00:08, 9.33it/s] 26%|██▌ | 26/100 [00:02<00:07, 9.31it/s] 27%|██▋ | 27/100 [00:02<00:07, 9.22it/s] 28%|██▊ | 28/100 [00:03<00:07, 9.13it/s] 29%|██▉ | 29/100 [00:03<00:07, 9.25it/s] 30%|███ | 30/100 [00:03<00:07, 9.26it/s] 31%|███ | 31/100 [00:03<00:07, 9.27it/s] 32%|███▏ | 32/100 [00:03<00:07, 9.33it/s] 33%|███▎ | 33/100 [00:03<00:07, 9.28it/s] 34%|███▍ | 34/100 [00:03<00:07, 9.27it/s] 35%|███▌ | 35/100 [00:03<00:06, 9.31it/s] 36%|███▌ | 36/100 [00:03<00:06, 9.31it/s] 37%|███▋ | 37/100 [00:03<00:06, 9.35it/s] 38%|███▊ | 38/100 [00:04<00:06, 9.34it/s] 39%|███▉ | 39/100 [00:04<00:06, 9.37it/s] 40%|████ | 40/100 [00:04<00:06, 9.37it/s] 41%|████ | 41/100 [00:04<00:06, 9.36it/s] 42%|████▏ | 42/100 [00:04<00:06, 9.23it/s] 43%|████▎ | 43/100 [00:04<00:06, 9.09it/s] 44%|████▍ | 44/100 [00:04<00:06, 9.05it/s] 45%|████▌ | 45/100 [00:04<00:06, 9.02it/s] 46%|████▌ | 46/100 [00:04<00:05, 9.17it/s] 47%|████▋ | 47/100 [00:05<00:05, 9.22it/s] 48%|████▊ | 48/100 [00:05<00:05, 9.26it/s] 49%|████▉ | 49/100 [00:05<00:05, 9.30it/s] 50%|█████ | 50/100 [00:05<00:05, 9.36it/s] 51%|█████ | 51/100 [00:05<00:05, 9.40it/s] 52%|█████▏ | 52/100 [00:05<00:05, 9.33it/s] 53%|█████▎ | 53/100 [00:05<00:05, 9.32it/s] 54%|█████▍ | 54/100 [00:05<00:04, 9.34it/s] 55%|█████▌ | 55/100 [00:05<00:04, 9.34it/s] 56%|█████▌ | 56/100 [00:06<00:04, 9.33it/s] 57%|█████▋ | 57/100 [00:06<00:04, 9.30it/s] 58%|█████▊ | 58/100 [00:06<00:04, 9.30it/s] 59%|█████▉ | 59/100 [00:06<00:04, 9.33it/s] 60%|██████ | 60/100 [00:06<00:04, 9.22it/s] 61%|██████ | 61/100 [00:06<00:04, 9.22it/s] 62%|██████▏ | 62/100 [00:06<00:04, 9.27it/s] 63%|██████▎ | 63/100 [00:06<00:03, 9.30it/s] 64%|██████▍ | 64/100 [00:06<00:03, 9.33it/s] 65%|██████▌ | 65/100 [00:07<00:03, 9.31it/s] 66%|██████▌ | 66/100 [00:07<00:03, 9.24it/s] 67%|██████▋ | 67/100 [00:07<00:03, 8.94it/s] 68%|██████▊ | 68/100 [00:07<00:03, 8.99it/s] 69%|██████▉ | 69/100 [00:07<00:03, 8.67it/s] 70%|███████ | 70/100 [00:07<00:03, 8.69it/s] 71%|███████ | 71/100 [00:07<00:03, 8.74it/s] 72%|███████▏ | 72/100 [00:07<00:03, 8.77it/s] 73%|███████▎ | 73/100 [00:07<00:03, 8.50it/s] 74%|███████▍ | 74/100 [00:08<00:03, 8.63it/s] 75%|███████▌ | 75/100 [00:08<00:02, 8.69it/s] 76%|███████▌ | 76/100 [00:08<00:02, 8.68it/s] 77%|███████▋ | 77/100 [00:08<00:02, 8.78it/s] 78%|███████▊ | 78/100 [00:08<00:02, 8.94it/s] 79%|███████▉ | 79/100 [00:08<00:02, 9.10it/s] 80%|████████ | 80/100 [00:08<00:02, 9.16it/s] 81%|████████ | 81/100 [00:08<00:02, 9.28it/s] 82%|████████▏ | 82/100 [00:08<00:01, 9.34it/s] 83%|████████▎ | 83/100 [00:09<00:01, 9.35it/s] 84%|████████▍ | 84/100 [00:09<00:01, 9.40it/s] 85%|████████▌ | 85/100 [00:09<00:01, 9.30it/s] 86%|████████▌ | 86/100 [00:09<00:01, 9.34it/s] 87%|████████▋ | 87/100 [00:09<00:01, 9.40it/s] 88%|████████▊ | 88/100 [00:09<00:01, 9.43it/s] 89%|████████▉ | 89/100 [00:09<00:01, 9.46it/s] 90%|█████████ | 90/100 [00:09<00:01, 9.50it/s] 91%|█████████ | 91/100 [00:09<00:00, 9.50it/s] 92%|█████████▏| 92/100 [00:09<00:00, 9.55it/s] 93%|█████████▎| 93/100 [00:10<00:00, 9.58it/s] 94%|█████████▍| 94/100 [00:10<00:00, 9.59it/s] 95%|█████████▌| 95/100 [00:10<00:00, 9.57it/s] 96%|█████████▌| 96/100 [00:10<00:00, 9.56it/s] 97%|█████████▋| 97/100 [00:10<00:00, 9.53it/s] 98%|█████████▊| 98/100 [00:10<00:00, 9.49it/s] 99%|█████████▉| 99/100 [00:10<00:00, 9.48it/s] 100%|██████████| 100/100 [00:10<00:00, 9.50it/s] 100%|██████████| 100/100 [00:10<00:00, 9.24it/s]
Prediction
vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ffIDhaqoqs3brqbojoglkjjdrulvpaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", { input: { width: 512, height: 512, prompt: "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", input={ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-17T07:17:13.477652Z", "created_at": "2023-12-17T07:16:58.358438Z", "data_removed": false, "error": null, "id": "haqoqs3brqbojoglkjjdrulvpa", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 40362\nEnsuring enough disk space...\nFree disk space: 1477234606080\nDownloading weights: https://replicate.delivery/pbxt/4m43wxvIE94eW6gIeYCIUIoC8wfJ0ZDCiw3gFzloQnShx5CkA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.263s (707 MB/s)\\nExtracted 186 MB in 0.056s (3.3 GB/s)\\n'\nDownloaded weights in 0.39598512649536133 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1>, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces\ntxt2img mode\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:17, 5.57it/s]\n 2%|▏ | 2/100 [00:00<00:13, 7.42it/s]\n 3%|▎ | 3/100 [00:00<00:11, 8.36it/s]\n 4%|▍ | 4/100 [00:00<00:10, 8.91it/s]\n 5%|▌ | 5/100 [00:00<00:10, 9.25it/s]\n 6%|▌ | 6/100 [00:00<00:10, 9.28it/s]\n 7%|▋ | 7/100 [00:00<00:10, 9.28it/s]\n 8%|▊ | 8/100 [00:00<00:09, 9.23it/s]\n 9%|▉ | 9/100 [00:01<00:09, 9.24it/s]\n 10%|█ | 10/100 [00:01<00:09, 9.21it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.20it/s]\n 12%|█▏ | 12/100 [00:01<00:09, 9.38it/s]\n 13%|█▎ | 13/100 [00:01<00:09, 9.55it/s]\n 14%|█▍ | 14/100 [00:01<00:08, 9.66it/s]\n 15%|█▌ | 15/100 [00:01<00:08, 9.75it/s]\n 16%|█▌ | 16/100 [00:01<00:08, 9.72it/s]\n 17%|█▋ | 17/100 [00:01<00:08, 9.77it/s]\n 18%|█▊ | 18/100 [00:01<00:08, 9.80it/s]\n 19%|█▉ | 19/100 [00:02<00:08, 9.81it/s]\n 20%|██ | 20/100 [00:02<00:08, 9.82it/s]\n 21%|██ | 21/100 [00:02<00:08, 9.86it/s]\n 22%|██▏ | 22/100 [00:02<00:07, 9.84it/s]\n 23%|██▎ | 23/100 [00:02<00:07, 9.77it/s]\n 24%|██▍ | 24/100 [00:02<00:07, 9.60it/s]\n 25%|██▌ | 25/100 [00:02<00:07, 9.50it/s]\n 26%|██▌ | 26/100 [00:02<00:07, 9.42it/s]\n 27%|██▋ | 27/100 [00:02<00:07, 9.53it/s]\n 28%|██▊ | 28/100 [00:02<00:07, 9.56it/s]\n 29%|██▉ | 29/100 [00:03<00:07, 9.62it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.67it/s]\n 31%|███ | 31/100 [00:03<00:07, 9.73it/s]\n 32%|███▏ | 32/100 [00:03<00:07, 9.65it/s]\n 33%|███▎ | 33/100 [00:03<00:07, 9.28it/s]\n 34%|███▍ | 34/100 [00:03<00:07, 9.22it/s]\n 35%|███▌ | 35/100 [00:03<00:07, 9.16it/s]\n 36%|███▌ | 36/100 [00:03<00:06, 9.16it/s]\n 37%|███▋ | 37/100 [00:03<00:06, 9.14it/s]\n 38%|███▊ | 38/100 [00:04<00:06, 9.18it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 9.20it/s]\n 40%|████ | 40/100 [00:04<00:06, 9.21it/s]\n 41%|████ | 41/100 [00:04<00:06, 9.24it/s]\n 42%|████▏ | 42/100 [00:04<00:06, 9.28it/s]\n 43%|████▎ | 43/100 [00:04<00:06, 9.29it/s]\n 44%|████▍ | 44/100 [00:04<00:06, 9.23it/s]\n 45%|████▌ | 45/100 [00:04<00:06, 8.87it/s]\n 46%|████▌ | 46/100 [00:04<00:06, 8.93it/s]\n 47%|████▋ | 47/100 [00:05<00:05, 9.02it/s]\n 48%|████▊ | 48/100 [00:05<00:05, 9.10it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 9.15it/s]\n 50%|█████ | 50/100 [00:05<00:05, 9.27it/s]\n 51%|█████ | 51/100 [00:05<00:05, 8.96it/s]\n 52%|█████▏ | 52/100 [00:05<00:05, 9.04it/s]\n 53%|█████▎ | 53/100 [00:05<00:05, 9.01it/s]\n 54%|█████▍ | 54/100 [00:05<00:05, 9.07it/s]\n 55%|█████▌ | 55/100 [00:05<00:04, 9.05it/s]\n 56%|█████▌ | 56/100 [00:06<00:04, 9.05it/s]\n 57%|█████▋ | 57/100 [00:06<00:04, 9.08it/s]\n 58%|█████▊ | 58/100 [00:06<00:04, 9.08it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 9.11it/s]\n 60%|██████ | 60/100 [00:06<00:04, 9.14it/s]\n 61%|██████ | 61/100 [00:06<00:04, 9.09it/s]\n 62%|██████▏ | 62/100 [00:06<00:04, 9.10it/s]\n 63%|██████▎ | 63/100 [00:06<00:04, 9.12it/s]\n 64%|██████▍ | 64/100 [00:06<00:03, 9.17it/s]\n 65%|██████▌ | 65/100 [00:07<00:03, 9.21it/s]\n 66%|██████▌ | 66/100 [00:07<00:03, 9.23it/s]\n 67%|██████▋ | 67/100 [00:07<00:03, 9.25it/s]\n 68%|██████▊ | 68/100 [00:07<00:03, 9.26it/s]\n 69%|██████▉ | 69/100 [00:07<00:03, 9.27it/s]\n 70%|███████ | 70/100 [00:07<00:03, 9.26it/s]\n 71%|███████ | 71/100 [00:07<00:03, 9.33it/s]\n 72%|███████▏ | 72/100 [00:07<00:02, 9.47it/s]\n 73%|███████▎ | 73/100 [00:07<00:02, 9.60it/s]\n 74%|███████▍ | 74/100 [00:07<00:02, 9.70it/s]\n 75%|███████▌ | 75/100 [00:08<00:02, 9.76it/s]\n 76%|███████▌ | 76/100 [00:08<00:02, 9.83it/s]\n 78%|███████▊ | 78/100 [00:08<00:02, 9.94it/s]\n 80%|████████ | 80/100 [00:08<00:02, 9.98it/s]\n 81%|████████ | 81/100 [00:08<00:01, 9.97it/s]\n 82%|████████▏ | 82/100 [00:08<00:01, 9.96it/s]\n 83%|████████▎ | 83/100 [00:08<00:01, 9.96it/s]\n 84%|████████▍ | 84/100 [00:08<00:01, 9.97it/s]\n 86%|████████▌ | 86/100 [00:09<00:01, 9.99it/s]\n 87%|████████▋ | 87/100 [00:09<00:01, 9.99it/s]\n 89%|████████▉ | 89/100 [00:09<00:01, 10.01it/s]\n 90%|█████████ | 90/100 [00:09<00:01, 9.93it/s]\n 91%|█████████ | 91/100 [00:09<00:00, 9.83it/s]\n 92%|█████████▏| 92/100 [00:09<00:00, 9.84it/s]\n 93%|█████████▎| 93/100 [00:09<00:00, 9.83it/s]\n 94%|█████████▍| 94/100 [00:09<00:00, 9.86it/s]\n 96%|█████████▌| 96/100 [00:10<00:00, 9.92it/s]\n 98%|█████████▊| 98/100 [00:10<00:00, 9.98it/s]\n 99%|█████████▉| 99/100 [00:10<00:00, 9.96it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.89it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.44it/s]", "metrics": { "predict_time": 12.734555, "total_time": 15.119214 }, "output": [ "https://replicate.delivery/pbxt/NpjykDkHxPo5Hx6BwTQSaWiHtOgkOBv7dOdc7tDk1AHekiBJA/out-0.png" ], "started_at": "2023-12-17T07:17:00.743097Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/haqoqs3brqbojoglkjjdrulvpa", "cancel": "https://api.replicate.com/v1/predictions/haqoqs3brqbojoglkjjdrulvpa/cancel" }, "version": "572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff" }
Generated inUsing seed: 40362 Ensuring enough disk space... Free disk space: 1477234606080 Downloading weights: https://replicate.delivery/pbxt/4m43wxvIE94eW6gIeYCIUIoC8wfJ0ZDCiw3gFzloQnShx5CkA/trained_model.tar b'Downloaded 186 MB bytes in 0.263s (707 MB/s)\nExtracted 186 MB in 0.056s (3.3 GB/s)\n' Downloaded weights in 0.39598512649536133 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: <s0><s1>, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces txt2img mode 0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:17, 5.57it/s] 2%|▏ | 2/100 [00:00<00:13, 7.42it/s] 3%|▎ | 3/100 [00:00<00:11, 8.36it/s] 4%|▍ | 4/100 [00:00<00:10, 8.91it/s] 5%|▌ | 5/100 [00:00<00:10, 9.25it/s] 6%|▌ | 6/100 [00:00<00:10, 9.28it/s] 7%|▋ | 7/100 [00:00<00:10, 9.28it/s] 8%|▊ | 8/100 [00:00<00:09, 9.23it/s] 9%|▉ | 9/100 [00:01<00:09, 9.24it/s] 10%|█ | 10/100 [00:01<00:09, 9.21it/s] 11%|█ | 11/100 [00:01<00:09, 9.20it/s] 12%|█▏ | 12/100 [00:01<00:09, 9.38it/s] 13%|█▎ | 13/100 [00:01<00:09, 9.55it/s] 14%|█▍ | 14/100 [00:01<00:08, 9.66it/s] 15%|█▌ | 15/100 [00:01<00:08, 9.75it/s] 16%|█▌ | 16/100 [00:01<00:08, 9.72it/s] 17%|█▋ | 17/100 [00:01<00:08, 9.77it/s] 18%|█▊ | 18/100 [00:01<00:08, 9.80it/s] 19%|█▉ | 19/100 [00:02<00:08, 9.81it/s] 20%|██ | 20/100 [00:02<00:08, 9.82it/s] 21%|██ | 21/100 [00:02<00:08, 9.86it/s] 22%|██▏ | 22/100 [00:02<00:07, 9.84it/s] 23%|██▎ | 23/100 [00:02<00:07, 9.77it/s] 24%|██▍ | 24/100 [00:02<00:07, 9.60it/s] 25%|██▌ | 25/100 [00:02<00:07, 9.50it/s] 26%|██▌ | 26/100 [00:02<00:07, 9.42it/s] 27%|██▋ | 27/100 [00:02<00:07, 9.53it/s] 28%|██▊ | 28/100 [00:02<00:07, 9.56it/s] 29%|██▉ | 29/100 [00:03<00:07, 9.62it/s] 30%|███ | 30/100 [00:03<00:07, 9.67it/s] 31%|███ | 31/100 [00:03<00:07, 9.73it/s] 32%|███▏ | 32/100 [00:03<00:07, 9.65it/s] 33%|███▎ | 33/100 [00:03<00:07, 9.28it/s] 34%|███▍ | 34/100 [00:03<00:07, 9.22it/s] 35%|███▌ | 35/100 [00:03<00:07, 9.16it/s] 36%|███▌ | 36/100 [00:03<00:06, 9.16it/s] 37%|███▋ | 37/100 [00:03<00:06, 9.14it/s] 38%|███▊ | 38/100 [00:04<00:06, 9.18it/s] 39%|███▉ | 39/100 [00:04<00:06, 9.20it/s] 40%|████ | 40/100 [00:04<00:06, 9.21it/s] 41%|████ | 41/100 [00:04<00:06, 9.24it/s] 42%|████▏ | 42/100 [00:04<00:06, 9.28it/s] 43%|████▎ | 43/100 [00:04<00:06, 9.29it/s] 44%|████▍ | 44/100 [00:04<00:06, 9.23it/s] 45%|████▌ | 45/100 [00:04<00:06, 8.87it/s] 46%|████▌ | 46/100 [00:04<00:06, 8.93it/s] 47%|████▋ | 47/100 [00:05<00:05, 9.02it/s] 48%|████▊ | 48/100 [00:05<00:05, 9.10it/s] 49%|████▉ | 49/100 [00:05<00:05, 9.15it/s] 50%|█████ | 50/100 [00:05<00:05, 9.27it/s] 51%|█████ | 51/100 [00:05<00:05, 8.96it/s] 52%|█████▏ | 52/100 [00:05<00:05, 9.04it/s] 53%|█████▎ | 53/100 [00:05<00:05, 9.01it/s] 54%|█████▍ | 54/100 [00:05<00:05, 9.07it/s] 55%|█████▌ | 55/100 [00:05<00:04, 9.05it/s] 56%|█████▌ | 56/100 [00:06<00:04, 9.05it/s] 57%|█████▋ | 57/100 [00:06<00:04, 9.08it/s] 58%|█████▊ | 58/100 [00:06<00:04, 9.08it/s] 59%|█████▉ | 59/100 [00:06<00:04, 9.11it/s] 60%|██████ | 60/100 [00:06<00:04, 9.14it/s] 61%|██████ | 61/100 [00:06<00:04, 9.09it/s] 62%|██████▏ | 62/100 [00:06<00:04, 9.10it/s] 63%|██████▎ | 63/100 [00:06<00:04, 9.12it/s] 64%|██████▍ | 64/100 [00:06<00:03, 9.17it/s] 65%|██████▌ | 65/100 [00:07<00:03, 9.21it/s] 66%|██████▌ | 66/100 [00:07<00:03, 9.23it/s] 67%|██████▋ | 67/100 [00:07<00:03, 9.25it/s] 68%|██████▊ | 68/100 [00:07<00:03, 9.26it/s] 69%|██████▉ | 69/100 [00:07<00:03, 9.27it/s] 70%|███████ | 70/100 [00:07<00:03, 9.26it/s] 71%|███████ | 71/100 [00:07<00:03, 9.33it/s] 72%|███████▏ | 72/100 [00:07<00:02, 9.47it/s] 73%|███████▎ | 73/100 [00:07<00:02, 9.60it/s] 74%|███████▍ | 74/100 [00:07<00:02, 9.70it/s] 75%|███████▌ | 75/100 [00:08<00:02, 9.76it/s] 76%|███████▌ | 76/100 [00:08<00:02, 9.83it/s] 78%|███████▊ | 78/100 [00:08<00:02, 9.94it/s] 80%|████████ | 80/100 [00:08<00:02, 9.98it/s] 81%|████████ | 81/100 [00:08<00:01, 9.97it/s] 82%|████████▏ | 82/100 [00:08<00:01, 9.96it/s] 83%|████████▎ | 83/100 [00:08<00:01, 9.96it/s] 84%|████████▍ | 84/100 [00:08<00:01, 9.97it/s] 86%|████████▌ | 86/100 [00:09<00:01, 9.99it/s] 87%|████████▋ | 87/100 [00:09<00:01, 9.99it/s] 89%|████████▉ | 89/100 [00:09<00:01, 10.01it/s] 90%|█████████ | 90/100 [00:09<00:01, 9.93it/s] 91%|█████████ | 91/100 [00:09<00:00, 9.83it/s] 92%|█████████▏| 92/100 [00:09<00:00, 9.84it/s] 93%|█████████▎| 93/100 [00:09<00:00, 9.83it/s] 94%|█████████▍| 94/100 [00:09<00:00, 9.86it/s] 96%|█████████▌| 96/100 [00:10<00:00, 9.92it/s] 98%|█████████▊| 98/100 [00:10<00:00, 9.98it/s] 99%|█████████▉| 99/100 [00:10<00:00, 9.96it/s] 100%|██████████| 100/100 [00:10<00:00, 9.89it/s] 100%|██████████| 100/100 [00:10<00:00, 9.44it/s]
Prediction
vkolagotla/bapubomma_ai:b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1aIDfqib4jdbb2mhyhke3kz7ejxhvaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- bapubomma, artistic illustration, a Create a black and white art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, a Create a black and white art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "vkolagotla/bapubomma_ai:b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1a", { input: { width: 512, height: 512, prompt: "bapubomma, artistic illustration, a Create a black and white art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "vkolagotla/bapubomma_ai:b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1a", input={ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, a Create a black and white art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "vkolagotla/bapubomma_ai:b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1a", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, a Create a black and white art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-07T07:10:34.396754Z", "created_at": "2024-01-07T07:10:16.874579Z", "data_removed": false, "error": null, "id": "fqib4jdbb2mhyhke3kz7ejxhva", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, a Create a black and white art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 20533\nEnsuring enough disk space...\nFree disk space: 2312056832000\nDownloading weights: https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar\n2024-01-07T07:10:21Z | INFO | [ Initiating ] dest=/src/weights-cache/18bd246f48942b9b minimum_chunk_size=150M url=https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar\n2024-01-07T07:10:22Z | INFO | [ Complete ] dest=/src/weights-cache/18bd246f48942b9b size=\"186 MB\" total_elapsed=1.333s url=https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar\nb''\nDownloaded weights in 1.4765064716339111 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1>, artistic illustration, a Create a black and white art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel\ntxt2img mode\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:10, 9.40it/s]\n 2%|▏ | 2/100 [00:00<00:10, 9.60it/s]\n 3%|▎ | 3/100 [00:00<00:10, 9.69it/s]\n 4%|▍ | 4/100 [00:00<00:09, 9.71it/s]\n 5%|▌ | 5/100 [00:00<00:09, 9.73it/s]\n 6%|▌ | 6/100 [00:00<00:09, 9.77it/s]\n 7%|▋ | 7/100 [00:00<00:09, 9.78it/s]\n 8%|▊ | 8/100 [00:00<00:09, 9.79it/s]\n 9%|▉ | 9/100 [00:00<00:09, 9.77it/s]\n 10%|█ | 10/100 [00:01<00:09, 9.74it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.72it/s]\n 12%|█▏ | 12/100 [00:01<00:09, 9.69it/s]\n 13%|█▎ | 13/100 [00:01<00:08, 9.71it/s]\n 14%|█▍ | 14/100 [00:01<00:08, 9.70it/s]\n 15%|█▌ | 15/100 [00:01<00:08, 9.67it/s]\n 16%|█▌ | 16/100 [00:01<00:08, 9.70it/s]\n 17%|█▋ | 17/100 [00:01<00:08, 9.72it/s]\n 18%|█▊ | 18/100 [00:01<00:08, 9.74it/s]\n 19%|█▉ | 19/100 [00:01<00:08, 9.70it/s]\n 20%|██ | 20/100 [00:02<00:08, 9.67it/s]\n 21%|██ | 21/100 [00:02<00:08, 9.70it/s]\n 22%|██▏ | 22/100 [00:02<00:08, 9.71it/s]\n 23%|██▎ | 23/100 [00:02<00:07, 9.69it/s]\n 24%|██▍ | 24/100 [00:02<00:07, 9.65it/s]\n 25%|██▌ | 25/100 [00:02<00:07, 9.66it/s]\n 26%|██▌ | 26/100 [00:02<00:07, 9.67it/s]\n 27%|██▋ | 27/100 [00:02<00:07, 9.68it/s]\n 28%|██▊ | 28/100 [00:02<00:07, 9.71it/s]\n 29%|██▉ | 29/100 [00:02<00:07, 9.68it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.68it/s]\n 31%|███ | 31/100 [00:03<00:07, 9.72it/s]\n 32%|███▏ | 32/100 [00:03<00:06, 9.74it/s]\n 33%|███▎ | 33/100 [00:03<00:06, 9.69it/s]\n 34%|███▍ | 34/100 [00:03<00:06, 9.69it/s]\n 35%|███▌ | 35/100 [00:03<00:06, 9.71it/s]\n 36%|███▌ | 36/100 [00:03<00:06, 9.71it/s]\n 37%|███▋ | 37/100 [00:03<00:06, 9.74it/s]\n 38%|███▊ | 38/100 [00:03<00:06, 9.70it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 9.66it/s]\n 40%|████ | 40/100 [00:04<00:06, 9.67it/s]\n 41%|████ | 41/100 [00:04<00:06, 9.68it/s]\n 42%|████▏ | 42/100 [00:04<00:05, 9.71it/s]\n 43%|████▎ | 43/100 [00:04<00:05, 9.72it/s]\n 44%|████▍ | 44/100 [00:04<00:05, 9.73it/s]\n 45%|████▌ | 45/100 [00:04<00:05, 9.76it/s]\n 46%|████▌ | 46/100 [00:04<00:05, 9.77it/s]\n 47%|████▋ | 47/100 [00:04<00:05, 9.79it/s]\n 48%|████▊ | 48/100 [00:04<00:05, 9.78it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 9.73it/s]\n 50%|█████ | 50/100 [00:05<00:05, 9.73it/s]\n 51%|█████ | 51/100 [00:05<00:05, 9.71it/s]\n 52%|█████▏ | 52/100 [00:05<00:04, 9.71it/s]\n 53%|█████▎ | 53/100 [00:05<00:04, 9.69it/s]\n 54%|█████▍ | 54/100 [00:05<00:04, 9.69it/s]\n 55%|█████▌ | 55/100 [00:05<00:04, 9.69it/s]\n 56%|█████▌ | 56/100 [00:05<00:04, 9.67it/s]\n 57%|█████▋ | 57/100 [00:05<00:04, 9.72it/s]\n 58%|█████▊ | 58/100 [00:05<00:04, 9.71it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 9.72it/s]\n 60%|██████ | 60/100 [00:06<00:04, 9.75it/s]\n 61%|██████ | 61/100 [00:06<00:03, 9.78it/s]\n 62%|██████▏ | 62/100 [00:06<00:03, 9.79it/s]\n 63%|██████▎ | 63/100 [00:06<00:03, 9.77it/s]\n 64%|██████▍ | 64/100 [00:06<00:03, 9.79it/s]\n 65%|██████▌ | 65/100 [00:06<00:03, 9.79it/s]\n 66%|██████▌ | 66/100 [00:06<00:03, 9.79it/s]\n 67%|██████▋ | 67/100 [00:06<00:03, 9.76it/s]\n 68%|██████▊ | 68/100 [00:06<00:03, 9.67it/s]\n 69%|██████▉ | 69/100 [00:07<00:03, 9.64it/s]\n 70%|███████ | 70/100 [00:07<00:03, 9.64it/s]\n 71%|███████ | 71/100 [00:07<00:03, 9.65it/s]\n 72%|███████▏ | 72/100 [00:07<00:02, 9.68it/s]\n 73%|███████▎ | 73/100 [00:07<00:02, 9.70it/s]\n 74%|███████▍ | 74/100 [00:07<00:02, 9.74it/s]\n 75%|███████▌ | 75/100 [00:07<00:02, 9.74it/s]\n 76%|███████▌ | 76/100 [00:07<00:02, 9.74it/s]\n 77%|███████▋ | 77/100 [00:07<00:02, 9.77it/s]\n 78%|███████▊ | 78/100 [00:08<00:02, 9.75it/s]\n 79%|███████▉ | 79/100 [00:08<00:02, 9.76it/s]\n 80%|████████ | 80/100 [00:08<00:02, 9.79it/s]\n 81%|████████ | 81/100 [00:08<00:01, 9.79it/s]\n 82%|████████▏ | 82/100 [00:08<00:01, 9.76it/s]\n 83%|████████▎ | 83/100 [00:08<00:01, 9.75it/s]\n 84%|████████▍ | 84/100 [00:08<00:01, 9.75it/s]\n 85%|████████▌ | 85/100 [00:08<00:01, 9.74it/s]\n 86%|████████▌ | 86/100 [00:08<00:01, 9.75it/s]\n 87%|████████▋ | 87/100 [00:08<00:01, 9.75it/s]\n 88%|████████▊ | 88/100 [00:09<00:01, 9.73it/s]\n 89%|████████▉ | 89/100 [00:09<00:01, 9.76it/s]\n 90%|█████████ | 90/100 [00:09<00:01, 9.79it/s]\n 91%|█████████ | 91/100 [00:09<00:00, 9.81it/s]\n 92%|█████████▏| 92/100 [00:09<00:00, 9.77it/s]\n 93%|█████████▎| 93/100 [00:09<00:00, 9.77it/s]\n 94%|█████████▍| 94/100 [00:09<00:00, 9.78it/s]\n 95%|█████████▌| 95/100 [00:09<00:00, 9.79it/s]\n 96%|█████████▌| 96/100 [00:09<00:00, 9.77it/s]\n 97%|█████████▋| 97/100 [00:09<00:00, 9.72it/s]\n 98%|█████████▊| 98/100 [00:10<00:00, 9.70it/s]\n 99%|█████████▉| 99/100 [00:10<00:00, 9.71it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.72it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.72it/s]", "metrics": { "predict_time": 13.349189, "total_time": 17.522175 }, "output": [ "https://replicate.delivery/pbxt/ntm9UeLuYwy4fklEl5ZWt66GXRNGaWaisCboyXJiRtJpBAKSA/out-0.png" ], "started_at": "2024-01-07T07:10:21.047565Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fqib4jdbb2mhyhke3kz7ejxhva", "cancel": "https://api.replicate.com/v1/predictions/fqib4jdbb2mhyhke3kz7ejxhva/cancel" }, "version": "b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1a" }
Generated inUsing seed: 20533 Ensuring enough disk space... Free disk space: 2312056832000 Downloading weights: https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar 2024-01-07T07:10:21Z | INFO | [ Initiating ] dest=/src/weights-cache/18bd246f48942b9b minimum_chunk_size=150M url=https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar 2024-01-07T07:10:22Z | INFO | [ Complete ] dest=/src/weights-cache/18bd246f48942b9b size="186 MB" total_elapsed=1.333s url=https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar b'' Downloaded weights in 1.4765064716339111 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: <s0><s1>, artistic illustration, a Create a black and white art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel txt2img mode 0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:10, 9.40it/s] 2%|▏ | 2/100 [00:00<00:10, 9.60it/s] 3%|▎ | 3/100 [00:00<00:10, 9.69it/s] 4%|▍ | 4/100 [00:00<00:09, 9.71it/s] 5%|▌ | 5/100 [00:00<00:09, 9.73it/s] 6%|▌ | 6/100 [00:00<00:09, 9.77it/s] 7%|▋ | 7/100 [00:00<00:09, 9.78it/s] 8%|▊ | 8/100 [00:00<00:09, 9.79it/s] 9%|▉ | 9/100 [00:00<00:09, 9.77it/s] 10%|█ | 10/100 [00:01<00:09, 9.74it/s] 11%|█ | 11/100 [00:01<00:09, 9.72it/s] 12%|█▏ | 12/100 [00:01<00:09, 9.69it/s] 13%|█▎ | 13/100 [00:01<00:08, 9.71it/s] 14%|█▍ | 14/100 [00:01<00:08, 9.70it/s] 15%|█▌ | 15/100 [00:01<00:08, 9.67it/s] 16%|█▌ | 16/100 [00:01<00:08, 9.70it/s] 17%|█▋ | 17/100 [00:01<00:08, 9.72it/s] 18%|█▊ | 18/100 [00:01<00:08, 9.74it/s] 19%|█▉ | 19/100 [00:01<00:08, 9.70it/s] 20%|██ | 20/100 [00:02<00:08, 9.67it/s] 21%|██ | 21/100 [00:02<00:08, 9.70it/s] 22%|██▏ | 22/100 [00:02<00:08, 9.71it/s] 23%|██▎ | 23/100 [00:02<00:07, 9.69it/s] 24%|██▍ | 24/100 [00:02<00:07, 9.65it/s] 25%|██▌ | 25/100 [00:02<00:07, 9.66it/s] 26%|██▌ | 26/100 [00:02<00:07, 9.67it/s] 27%|██▋ | 27/100 [00:02<00:07, 9.68it/s] 28%|██▊ | 28/100 [00:02<00:07, 9.71it/s] 29%|██▉ | 29/100 [00:02<00:07, 9.68it/s] 30%|███ | 30/100 [00:03<00:07, 9.68it/s] 31%|███ | 31/100 [00:03<00:07, 9.72it/s] 32%|███▏ | 32/100 [00:03<00:06, 9.74it/s] 33%|███▎ | 33/100 [00:03<00:06, 9.69it/s] 34%|███▍ | 34/100 [00:03<00:06, 9.69it/s] 35%|███▌ | 35/100 [00:03<00:06, 9.71it/s] 36%|███▌ | 36/100 [00:03<00:06, 9.71it/s] 37%|███▋ | 37/100 [00:03<00:06, 9.74it/s] 38%|███▊ | 38/100 [00:03<00:06, 9.70it/s] 39%|███▉ | 39/100 [00:04<00:06, 9.66it/s] 40%|████ | 40/100 [00:04<00:06, 9.67it/s] 41%|████ | 41/100 [00:04<00:06, 9.68it/s] 42%|████▏ | 42/100 [00:04<00:05, 9.71it/s] 43%|████▎ | 43/100 [00:04<00:05, 9.72it/s] 44%|████▍ | 44/100 [00:04<00:05, 9.73it/s] 45%|████▌ | 45/100 [00:04<00:05, 9.76it/s] 46%|████▌ | 46/100 [00:04<00:05, 9.77it/s] 47%|████▋ | 47/100 [00:04<00:05, 9.79it/s] 48%|████▊ | 48/100 [00:04<00:05, 9.78it/s] 49%|████▉ | 49/100 [00:05<00:05, 9.73it/s] 50%|█████ | 50/100 [00:05<00:05, 9.73it/s] 51%|█████ | 51/100 [00:05<00:05, 9.71it/s] 52%|█████▏ | 52/100 [00:05<00:04, 9.71it/s] 53%|█████▎ | 53/100 [00:05<00:04, 9.69it/s] 54%|█████▍ | 54/100 [00:05<00:04, 9.69it/s] 55%|█████▌ | 55/100 [00:05<00:04, 9.69it/s] 56%|█████▌ | 56/100 [00:05<00:04, 9.67it/s] 57%|█████▋ | 57/100 [00:05<00:04, 9.72it/s] 58%|█████▊ | 58/100 [00:05<00:04, 9.71it/s] 59%|█████▉ | 59/100 [00:06<00:04, 9.72it/s] 60%|██████ | 60/100 [00:06<00:04, 9.75it/s] 61%|██████ | 61/100 [00:06<00:03, 9.78it/s] 62%|██████▏ | 62/100 [00:06<00:03, 9.79it/s] 63%|██████▎ | 63/100 [00:06<00:03, 9.77it/s] 64%|██████▍ | 64/100 [00:06<00:03, 9.79it/s] 65%|██████▌ | 65/100 [00:06<00:03, 9.79it/s] 66%|██████▌ | 66/100 [00:06<00:03, 9.79it/s] 67%|██████▋ | 67/100 [00:06<00:03, 9.76it/s] 68%|██████▊ | 68/100 [00:06<00:03, 9.67it/s] 69%|██████▉ | 69/100 [00:07<00:03, 9.64it/s] 70%|███████ | 70/100 [00:07<00:03, 9.64it/s] 71%|███████ | 71/100 [00:07<00:03, 9.65it/s] 72%|███████▏ | 72/100 [00:07<00:02, 9.68it/s] 73%|███████▎ | 73/100 [00:07<00:02, 9.70it/s] 74%|███████▍ | 74/100 [00:07<00:02, 9.74it/s] 75%|███████▌ | 75/100 [00:07<00:02, 9.74it/s] 76%|███████▌ | 76/100 [00:07<00:02, 9.74it/s] 77%|███████▋ | 77/100 [00:07<00:02, 9.77it/s] 78%|███████▊ | 78/100 [00:08<00:02, 9.75it/s] 79%|███████▉ | 79/100 [00:08<00:02, 9.76it/s] 80%|████████ | 80/100 [00:08<00:02, 9.79it/s] 81%|████████ | 81/100 [00:08<00:01, 9.79it/s] 82%|████████▏ | 82/100 [00:08<00:01, 9.76it/s] 83%|████████▎ | 83/100 [00:08<00:01, 9.75it/s] 84%|████████▍ | 84/100 [00:08<00:01, 9.75it/s] 85%|████████▌ | 85/100 [00:08<00:01, 9.74it/s] 86%|████████▌ | 86/100 [00:08<00:01, 9.75it/s] 87%|████████▋ | 87/100 [00:08<00:01, 9.75it/s] 88%|████████▊ | 88/100 [00:09<00:01, 9.73it/s] 89%|████████▉ | 89/100 [00:09<00:01, 9.76it/s] 90%|█████████ | 90/100 [00:09<00:01, 9.79it/s] 91%|█████████ | 91/100 [00:09<00:00, 9.81it/s] 92%|█████████▏| 92/100 [00:09<00:00, 9.77it/s] 93%|█████████▎| 93/100 [00:09<00:00, 9.77it/s] 94%|█████████▍| 94/100 [00:09<00:00, 9.78it/s] 95%|█████████▌| 95/100 [00:09<00:00, 9.79it/s] 96%|█████████▌| 96/100 [00:09<00:00, 9.77it/s] 97%|█████████▋| 97/100 [00:09<00:00, 9.72it/s] 98%|█████████▊| 98/100 [00:10<00:00, 9.70it/s] 99%|█████████▉| 99/100 [00:10<00:00, 9.71it/s] 100%|██████████| 100/100 [00:10<00:00, 9.72it/s] 100%|██████████| 100/100 [00:10<00:00, 9.72it/s]
Prediction
vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ffIDxfp76hlbqgpru6uxr2j3h4l5biStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- bapubomma, artistic illustration, two sisters walking together in a beautiful south indian village, beautiful village, river, clear faces
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two sisters walking together in a beautiful south indian village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", { input: { width: 512, height: 512, prompt: "bapubomma, artistic illustration, two sisters walking together in a beautiful south indian village, beautiful village, river, clear faces", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", input={ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two sisters walking together in a beautiful south indian village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two sisters walking together in a beautiful south indian village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-17T07:20:30.313006Z", "created_at": "2023-12-17T07:20:15.229173Z", "data_removed": false, "error": null, "id": "xfp76hlbqgpru6uxr2j3h4l5bi", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, two sisters walking together in a beautiful south indian village, beautiful village, river, clear faces", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 6454\nEnsuring enough disk space...\nFree disk space: 2133076832256\nDownloading weights: https://replicate.delivery/pbxt/4m43wxvIE94eW6gIeYCIUIoC8wfJ0ZDCiw3gFzloQnShx5CkA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.232s (801 MB/s)\\nExtracted 186 MB in 0.052s (3.6 GB/s)\\n'\nDownloaded weights in 0.46391820907592773 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1>, artistic illustration, two sisters walking together in a beautiful south indian village, beautiful village, river, clear faces\ntxt2img mode\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:10, 9.27it/s]\n 2%|▏ | 2/100 [00:00<00:10, 9.39it/s]\n 3%|▎ | 3/100 [00:00<00:10, 9.40it/s]\n 4%|▍ | 4/100 [00:00<00:10, 9.49it/s]\n 5%|▌ | 5/100 [00:00<00:09, 9.54it/s]\n 6%|▌ | 6/100 [00:00<00:09, 9.47it/s]\n 7%|▋ | 7/100 [00:00<00:09, 9.47it/s]\n 8%|▊ | 8/100 [00:00<00:09, 9.46it/s]\n 9%|▉ | 9/100 [00:00<00:09, 9.33it/s]\n 10%|█ | 10/100 [00:01<00:09, 9.26it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.30it/s]\n 12%|█▏ | 12/100 [00:01<00:09, 9.33it/s]\n 13%|█▎ | 13/100 [00:01<00:09, 9.34it/s]\n 14%|█▍ | 14/100 [00:01<00:09, 9.43it/s]\n 15%|█▌ | 15/100 [00:01<00:08, 9.50it/s]\n 16%|█▌ | 16/100 [00:01<00:08, 9.42it/s]\n 17%|█▋ | 17/100 [00:01<00:08, 9.39it/s]\n 18%|█▊ | 18/100 [00:01<00:08, 9.44it/s]\n 19%|█▉ | 19/100 [00:02<00:08, 9.49it/s]\n 20%|██ | 20/100 [00:02<00:08, 9.40it/s]\n 21%|██ | 21/100 [00:02<00:08, 9.32it/s]\n 22%|██▏ | 22/100 [00:02<00:08, 9.24it/s]\n 23%|██▎ | 23/100 [00:02<00:08, 9.23it/s]\n 24%|██▍ | 24/100 [00:02<00:08, 9.30it/s]\n 25%|██▌ | 25/100 [00:02<00:08, 9.36it/s]\n 26%|██▌ | 26/100 [00:02<00:07, 9.35it/s]\n 27%|██▋ | 27/100 [00:02<00:07, 9.29it/s]\n 28%|██▊ | 28/100 [00:02<00:07, 9.33it/s]\n 29%|██▉ | 29/100 [00:03<00:07, 9.44it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.50it/s]\n 31%|███ | 31/100 [00:03<00:07, 9.52it/s]\n 32%|███▏ | 32/100 [00:03<00:07, 9.51it/s]\n 33%|███▎ | 33/100 [00:03<00:07, 9.48it/s]\n 34%|███▍ | 34/100 [00:03<00:07, 9.38it/s]\n 35%|███▌ | 35/100 [00:03<00:07, 9.23it/s]\n 36%|███▌ | 36/100 [00:03<00:06, 9.27it/s]\n 37%|███▋ | 37/100 [00:03<00:06, 9.24it/s]\n 38%|███▊ | 38/100 [00:04<00:06, 9.23it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 9.30it/s]\n 40%|████ | 40/100 [00:04<00:06, 9.40it/s]\n 41%|████ | 41/100 [00:04<00:06, 9.44it/s]\n 42%|████▏ | 42/100 [00:04<00:06, 9.52it/s]\n 43%|████▎ | 43/100 [00:04<00:06, 9.49it/s]\n 44%|████▍ | 44/100 [00:04<00:06, 9.23it/s]\n 45%|████▌ | 45/100 [00:04<00:06, 9.15it/s]\n 46%|████▌ | 46/100 [00:04<00:05, 9.25it/s]\n 47%|████▋ | 47/100 [00:05<00:05, 9.33it/s]\n 48%|████▊ | 48/100 [00:05<00:05, 9.41it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 9.49it/s]\n 50%|█████ | 50/100 [00:05<00:05, 9.48it/s]\n 51%|█████ | 51/100 [00:05<00:05, 9.53it/s]\n 52%|█████▏ | 52/100 [00:05<00:05, 9.59it/s]\n 53%|█████▎ | 53/100 [00:05<00:04, 9.58it/s]\n 54%|█████▍ | 54/100 [00:05<00:04, 9.42it/s]\n 55%|█████▌ | 55/100 [00:05<00:04, 9.33it/s]\n 56%|█████▌ | 56/100 [00:05<00:04, 9.37it/s]\n 57%|█████▋ | 57/100 [00:06<00:04, 9.45it/s]\n 58%|█████▊ | 58/100 [00:06<00:04, 9.43it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 9.31it/s]\n 60%|██████ | 60/100 [00:06<00:04, 9.38it/s]\n 61%|██████ | 61/100 [00:06<00:04, 9.47it/s]\n 62%|██████▏ | 62/100 [00:06<00:03, 9.52it/s]\n 63%|██████▎ | 63/100 [00:06<00:03, 9.43it/s]\n 64%|██████▍ | 64/100 [00:06<00:03, 9.37it/s]\n 65%|██████▌ | 65/100 [00:06<00:03, 9.43it/s]\n 66%|██████▌ | 66/100 [00:07<00:03, 9.45it/s]\n 67%|██████▋ | 67/100 [00:07<00:03, 9.48it/s]\n 68%|██████▊ | 68/100 [00:07<00:03, 9.53it/s]\n 69%|██████▉ | 69/100 [00:07<00:03, 9.54it/s]\n 70%|███████ | 70/100 [00:07<00:03, 9.59it/s]\n 71%|███████ | 71/100 [00:07<00:03, 9.62it/s]\n 72%|███████▏ | 72/100 [00:07<00:02, 9.49it/s]\n 73%|███████▎ | 73/100 [00:07<00:02, 9.51it/s]\n 74%|███████▍ | 74/100 [00:07<00:02, 9.54it/s]\n 75%|███████▌ | 75/100 [00:07<00:02, 9.53it/s]\n 76%|███████▌ | 76/100 [00:08<00:02, 9.55it/s]\n 77%|███████▋ | 77/100 [00:08<00:02, 9.58it/s]\n 78%|███████▊ | 78/100 [00:08<00:02, 9.55it/s]\n 79%|███████▉ | 79/100 [00:08<00:02, 9.54it/s]\n 80%|████████ | 80/100 [00:08<00:02, 9.56it/s]\n 81%|████████ | 81/100 [00:08<00:01, 9.57it/s]\n 82%|████████▏ | 82/100 [00:08<00:01, 9.45it/s]\n 83%|████████▎ | 83/100 [00:08<00:01, 9.33it/s]\n 84%|████████▍ | 84/100 [00:08<00:01, 9.16it/s]\n 85%|████████▌ | 85/100 [00:09<00:01, 9.18it/s]\n 86%|████████▌ | 86/100 [00:09<00:01, 9.28it/s]\n 87%|████████▋ | 87/100 [00:09<00:01, 9.36it/s]\n 88%|████████▊ | 88/100 [00:09<00:01, 9.40it/s]\n 89%|████████▉ | 89/100 [00:09<00:01, 9.47it/s]\n 90%|█████████ | 90/100 [00:09<00:01, 9.52it/s]\n 91%|█████████ | 91/100 [00:09<00:00, 9.42it/s]\n 92%|█████████▏| 92/100 [00:09<00:00, 9.24it/s]\n 93%|█████████▎| 93/100 [00:09<00:00, 9.14it/s]\n 94%|█████████▍| 94/100 [00:10<00:00, 9.09it/s]\n 95%|█████████▌| 95/100 [00:10<00:00, 9.04it/s]\n 96%|█████████▌| 96/100 [00:10<00:00, 8.99it/s]\n 97%|█████████▋| 97/100 [00:10<00:00, 8.97it/s]\n 98%|█████████▊| 98/100 [00:10<00:00, 8.97it/s]\n 99%|█████████▉| 99/100 [00:10<00:00, 8.93it/s]\n100%|██████████| 100/100 [00:10<00:00, 8.83it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.36it/s]", "metrics": { "predict_time": 13.275415, "total_time": 15.083833 }, "output": [ "https://replicate.delivery/pbxt/bLrJv0ecIozdUKQvrg4PJJSgNEUdN1I2xtx4KNCH6GmeMFDSA/out-0.png" ], "started_at": "2023-12-17T07:20:17.037591Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xfp76hlbqgpru6uxr2j3h4l5bi", "cancel": "https://api.replicate.com/v1/predictions/xfp76hlbqgpru6uxr2j3h4l5bi/cancel" }, "version": "572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff" }
Generated inUsing seed: 6454 Ensuring enough disk space... Free disk space: 2133076832256 Downloading weights: https://replicate.delivery/pbxt/4m43wxvIE94eW6gIeYCIUIoC8wfJ0ZDCiw3gFzloQnShx5CkA/trained_model.tar b'Downloaded 186 MB bytes in 0.232s (801 MB/s)\nExtracted 186 MB in 0.052s (3.6 GB/s)\n' Downloaded weights in 0.46391820907592773 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: <s0><s1>, artistic illustration, two sisters walking together in a beautiful south indian village, beautiful village, river, clear faces txt2img mode 0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:10, 9.27it/s] 2%|▏ | 2/100 [00:00<00:10, 9.39it/s] 3%|▎ | 3/100 [00:00<00:10, 9.40it/s] 4%|▍ | 4/100 [00:00<00:10, 9.49it/s] 5%|▌ | 5/100 [00:00<00:09, 9.54it/s] 6%|▌ | 6/100 [00:00<00:09, 9.47it/s] 7%|▋ | 7/100 [00:00<00:09, 9.47it/s] 8%|▊ | 8/100 [00:00<00:09, 9.46it/s] 9%|▉ | 9/100 [00:00<00:09, 9.33it/s] 10%|█ | 10/100 [00:01<00:09, 9.26it/s] 11%|█ | 11/100 [00:01<00:09, 9.30it/s] 12%|█▏ | 12/100 [00:01<00:09, 9.33it/s] 13%|█▎ | 13/100 [00:01<00:09, 9.34it/s] 14%|█▍ | 14/100 [00:01<00:09, 9.43it/s] 15%|█▌ | 15/100 [00:01<00:08, 9.50it/s] 16%|█▌ | 16/100 [00:01<00:08, 9.42it/s] 17%|█▋ | 17/100 [00:01<00:08, 9.39it/s] 18%|█▊ | 18/100 [00:01<00:08, 9.44it/s] 19%|█▉ | 19/100 [00:02<00:08, 9.49it/s] 20%|██ | 20/100 [00:02<00:08, 9.40it/s] 21%|██ | 21/100 [00:02<00:08, 9.32it/s] 22%|██▏ | 22/100 [00:02<00:08, 9.24it/s] 23%|██▎ | 23/100 [00:02<00:08, 9.23it/s] 24%|██▍ | 24/100 [00:02<00:08, 9.30it/s] 25%|██▌ | 25/100 [00:02<00:08, 9.36it/s] 26%|██▌ | 26/100 [00:02<00:07, 9.35it/s] 27%|██▋ | 27/100 [00:02<00:07, 9.29it/s] 28%|██▊ | 28/100 [00:02<00:07, 9.33it/s] 29%|██▉ | 29/100 [00:03<00:07, 9.44it/s] 30%|███ | 30/100 [00:03<00:07, 9.50it/s] 31%|███ | 31/100 [00:03<00:07, 9.52it/s] 32%|███▏ | 32/100 [00:03<00:07, 9.51it/s] 33%|███▎ | 33/100 [00:03<00:07, 9.48it/s] 34%|███▍ | 34/100 [00:03<00:07, 9.38it/s] 35%|███▌ | 35/100 [00:03<00:07, 9.23it/s] 36%|███▌ | 36/100 [00:03<00:06, 9.27it/s] 37%|███▋ | 37/100 [00:03<00:06, 9.24it/s] 38%|███▊ | 38/100 [00:04<00:06, 9.23it/s] 39%|███▉ | 39/100 [00:04<00:06, 9.30it/s] 40%|████ | 40/100 [00:04<00:06, 9.40it/s] 41%|████ | 41/100 [00:04<00:06, 9.44it/s] 42%|████▏ | 42/100 [00:04<00:06, 9.52it/s] 43%|████▎ | 43/100 [00:04<00:06, 9.49it/s] 44%|████▍ | 44/100 [00:04<00:06, 9.23it/s] 45%|████▌ | 45/100 [00:04<00:06, 9.15it/s] 46%|████▌ | 46/100 [00:04<00:05, 9.25it/s] 47%|████▋ | 47/100 [00:05<00:05, 9.33it/s] 48%|████▊ | 48/100 [00:05<00:05, 9.41it/s] 49%|████▉ | 49/100 [00:05<00:05, 9.49it/s] 50%|█████ | 50/100 [00:05<00:05, 9.48it/s] 51%|█████ | 51/100 [00:05<00:05, 9.53it/s] 52%|█████▏ | 52/100 [00:05<00:05, 9.59it/s] 53%|█████▎ | 53/100 [00:05<00:04, 9.58it/s] 54%|█████▍ | 54/100 [00:05<00:04, 9.42it/s] 55%|█████▌ | 55/100 [00:05<00:04, 9.33it/s] 56%|█████▌ | 56/100 [00:05<00:04, 9.37it/s] 57%|█████▋ | 57/100 [00:06<00:04, 9.45it/s] 58%|█████▊ | 58/100 [00:06<00:04, 9.43it/s] 59%|█████▉ | 59/100 [00:06<00:04, 9.31it/s] 60%|██████ | 60/100 [00:06<00:04, 9.38it/s] 61%|██████ | 61/100 [00:06<00:04, 9.47it/s] 62%|██████▏ | 62/100 [00:06<00:03, 9.52it/s] 63%|██████▎ | 63/100 [00:06<00:03, 9.43it/s] 64%|██████▍ | 64/100 [00:06<00:03, 9.37it/s] 65%|██████▌ | 65/100 [00:06<00:03, 9.43it/s] 66%|██████▌ | 66/100 [00:07<00:03, 9.45it/s] 67%|██████▋ | 67/100 [00:07<00:03, 9.48it/s] 68%|██████▊ | 68/100 [00:07<00:03, 9.53it/s] 69%|██████▉ | 69/100 [00:07<00:03, 9.54it/s] 70%|███████ | 70/100 [00:07<00:03, 9.59it/s] 71%|███████ | 71/100 [00:07<00:03, 9.62it/s] 72%|███████▏ | 72/100 [00:07<00:02, 9.49it/s] 73%|███████▎ | 73/100 [00:07<00:02, 9.51it/s] 74%|███████▍ | 74/100 [00:07<00:02, 9.54it/s] 75%|███████▌ | 75/100 [00:07<00:02, 9.53it/s] 76%|███████▌ | 76/100 [00:08<00:02, 9.55it/s] 77%|███████▋ | 77/100 [00:08<00:02, 9.58it/s] 78%|███████▊ | 78/100 [00:08<00:02, 9.55it/s] 79%|███████▉ | 79/100 [00:08<00:02, 9.54it/s] 80%|████████ | 80/100 [00:08<00:02, 9.56it/s] 81%|████████ | 81/100 [00:08<00:01, 9.57it/s] 82%|████████▏ | 82/100 [00:08<00:01, 9.45it/s] 83%|████████▎ | 83/100 [00:08<00:01, 9.33it/s] 84%|████████▍ | 84/100 [00:08<00:01, 9.16it/s] 85%|████████▌ | 85/100 [00:09<00:01, 9.18it/s] 86%|████████▌ | 86/100 [00:09<00:01, 9.28it/s] 87%|████████▋ | 87/100 [00:09<00:01, 9.36it/s] 88%|████████▊ | 88/100 [00:09<00:01, 9.40it/s] 89%|████████▉ | 89/100 [00:09<00:01, 9.47it/s] 90%|█████████ | 90/100 [00:09<00:01, 9.52it/s] 91%|█████████ | 91/100 [00:09<00:00, 9.42it/s] 92%|█████████▏| 92/100 [00:09<00:00, 9.24it/s] 93%|█████████▎| 93/100 [00:09<00:00, 9.14it/s] 94%|█████████▍| 94/100 [00:10<00:00, 9.09it/s] 95%|█████████▌| 95/100 [00:10<00:00, 9.04it/s] 96%|█████████▌| 96/100 [00:10<00:00, 8.99it/s] 97%|█████████▋| 97/100 [00:10<00:00, 8.97it/s] 98%|█████████▊| 98/100 [00:10<00:00, 8.97it/s] 99%|█████████▉| 99/100 [00:10<00:00, 8.93it/s] 100%|██████████| 100/100 [00:10<00:00, 8.83it/s] 100%|██████████| 100/100 [00:10<00:00, 9.36it/s]
Prediction
vkolagotla/bapubomma_ai:b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1aID3nq3ealb6u4l43xgcwgjgob2oiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- bapubomma, artistic illustration, Create art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, Create art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "vkolagotla/bapubomma_ai:b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1a", { input: { width: 512, height: 512, prompt: "bapubomma, artistic illustration, Create art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "vkolagotla/bapubomma_ai:b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1a", input={ "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, Create art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "vkolagotla/bapubomma_ai:b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1a", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, Create art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-07T07:13:40.249621Z", "created_at": "2024-01-07T07:13:27.034551Z", "data_removed": false, "error": null, "id": "3nq3ealb6u4l43xgcwgjgob2oi", "input": { "width": 512, "height": 512, "prompt": "bapubomma, artistic illustration, Create art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 38956\nEnsuring enough disk space...\nFree disk space: 2372819640320\nDownloading weights: https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar\n2024-01-07T07:13:27Z | INFO | [ Initiating ] dest=/src/weights-cache/18bd246f48942b9b minimum_chunk_size=150M url=https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar\n2024-01-07T07:13:28Z | INFO | [ Complete ] dest=/src/weights-cache/18bd246f48942b9b size=\"186 MB\" total_elapsed=1.198s url=https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar\nb''\nDownloaded weights in 1.355332374572754 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1>, artistic illustration, Create art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel\ntxt2img mode\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:17, 5.64it/s]\n 2%|▏ | 2/100 [00:00<00:13, 7.48it/s]\n 3%|▎ | 3/100 [00:00<00:11, 8.40it/s]\n 4%|▍ | 4/100 [00:00<00:10, 8.91it/s]\n 5%|▌ | 5/100 [00:00<00:10, 9.23it/s]\n 6%|▌ | 6/100 [00:00<00:09, 9.43it/s]\n 7%|▋ | 7/100 [00:00<00:09, 9.57it/s]\n 8%|▊ | 8/100 [00:00<00:09, 9.50it/s]\n 9%|▉ | 9/100 [00:01<00:09, 9.36it/s]\n 10%|█ | 10/100 [00:01<00:09, 9.23it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.20it/s]\n 12%|█▏ | 12/100 [00:01<00:09, 9.39it/s]\n 13%|█▎ | 13/100 [00:01<00:09, 9.52it/s]\n 14%|█▍ | 14/100 [00:01<00:08, 9.61it/s]\n 15%|█▌ | 15/100 [00:01<00:08, 9.68it/s]\n 16%|█▌ | 16/100 [00:01<00:08, 9.73it/s]\n 17%|█▋ | 17/100 [00:01<00:08, 9.56it/s]\n 18%|█▊ | 18/100 [00:01<00:08, 9.39it/s]\n 19%|█▉ | 19/100 [00:02<00:08, 9.27it/s]\n 20%|██ | 20/100 [00:02<00:08, 9.20it/s]\n 21%|██ | 21/100 [00:02<00:08, 9.17it/s]\n 22%|██▏ | 22/100 [00:02<00:08, 9.15it/s]\n 23%|██▎ | 23/100 [00:02<00:08, 9.15it/s]\n 24%|██▍ | 24/100 [00:02<00:08, 9.14it/s]\n 25%|██▌ | 25/100 [00:02<00:08, 9.15it/s]\n 26%|██▌ | 26/100 [00:02<00:08, 9.11it/s]\n 27%|██▋ | 27/100 [00:02<00:08, 9.07it/s]\n 28%|██▊ | 28/100 [00:03<00:07, 9.04it/s]\n 29%|██▉ | 29/100 [00:03<00:07, 9.19it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.38it/s]\n 31%|███ | 31/100 [00:03<00:07, 9.51it/s]\n 32%|███▏ | 32/100 [00:03<00:07, 9.40it/s]\n 33%|███▎ | 33/100 [00:03<00:07, 9.52it/s]\n 34%|███▍ | 34/100 [00:03<00:06, 9.62it/s]\n 35%|███▌ | 35/100 [00:03<00:06, 9.67it/s]\n 36%|███▌ | 36/100 [00:03<00:06, 9.46it/s]\n 37%|███▋ | 37/100 [00:04<00:06, 9.27it/s]\n 38%|███▊ | 38/100 [00:04<00:06, 9.20it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 9.16it/s]\n 40%|████ | 40/100 [00:04<00:06, 9.14it/s]\n 41%|████ | 41/100 [00:04<00:06, 9.12it/s]\n 42%|████▏ | 42/100 [00:04<00:06, 9.09it/s]\n 43%|████▎ | 43/100 [00:04<00:06, 9.08it/s]\n 44%|████▍ | 44/100 [00:04<00:06, 9.07it/s]\n 45%|████▌ | 45/100 [00:04<00:06, 9.08it/s]\n 46%|████▌ | 46/100 [00:04<00:05, 9.08it/s]\n 47%|████▋ | 47/100 [00:05<00:05, 9.10it/s]\n 48%|████▊ | 48/100 [00:05<00:05, 9.02it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 8.99it/s]\n 50%|█████ | 50/100 [00:05<00:05, 8.99it/s]\n 51%|█████ | 51/100 [00:05<00:05, 8.99it/s]\n 52%|█████▏ | 52/100 [00:05<00:05, 8.99it/s]\n 53%|█████▎ | 53/100 [00:05<00:05, 9.03it/s]\n 54%|█████▍ | 54/100 [00:05<00:05, 9.15it/s]\n 55%|█████▌ | 55/100 [00:05<00:04, 9.12it/s]\n 56%|█████▌ | 56/100 [00:06<00:04, 9.11it/s]\n 57%|█████▋ | 57/100 [00:06<00:04, 9.12it/s]\n 58%|█████▊ | 58/100 [00:06<00:04, 9.13it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 9.12it/s]\n 60%|██████ | 60/100 [00:06<00:04, 9.10it/s]\n 61%|██████ | 61/100 [00:06<00:04, 9.26it/s]\n 62%|██████▏ | 62/100 [00:06<00:04, 9.39it/s]\n 63%|██████▎ | 63/100 [00:06<00:03, 9.39it/s]\n 64%|██████▍ | 64/100 [00:06<00:03, 9.45it/s]\n 65%|██████▌ | 65/100 [00:07<00:03, 9.50it/s]\n 66%|██████▌ | 66/100 [00:07<00:03, 9.53it/s]\n 67%|██████▋ | 67/100 [00:07<00:03, 9.59it/s]\n 68%|██████▊ | 68/100 [00:07<00:03, 9.66it/s]\n 69%|██████▉ | 69/100 [00:07<00:03, 9.72it/s]\n 70%|███████ | 70/100 [00:07<00:03, 9.75it/s]\n 71%|███████ | 71/100 [00:07<00:02, 9.79it/s]\n 72%|███████▏ | 72/100 [00:07<00:02, 9.81it/s]\n 73%|███████▎ | 73/100 [00:07<00:02, 9.72it/s]\n 74%|███████▍ | 74/100 [00:07<00:02, 9.51it/s]\n 75%|███████▌ | 75/100 [00:08<00:02, 9.40it/s]\n 76%|███████▌ | 76/100 [00:08<00:02, 9.31it/s]\n 77%|███████▋ | 77/100 [00:08<00:02, 9.24it/s]\n 78%|███████▊ | 78/100 [00:08<00:02, 9.41it/s]\n 79%|███████▉ | 79/100 [00:08<00:02, 9.55it/s]\n 80%|████████ | 80/100 [00:08<00:02, 9.42it/s]\n 81%|████████ | 81/100 [00:08<00:02, 9.33it/s]\n 82%|████████▏ | 82/100 [00:08<00:01, 9.27it/s]\n 83%|████████▎ | 83/100 [00:08<00:01, 9.22it/s]\n 84%|████████▍ | 84/100 [00:09<00:01, 9.19it/s]\n 85%|████████▌ | 85/100 [00:09<00:01, 9.18it/s]\n 86%|████████▌ | 86/100 [00:09<00:01, 9.17it/s]\n 87%|████████▋ | 87/100 [00:09<00:01, 9.17it/s]\n 88%|████████▊ | 88/100 [00:09<00:01, 9.15it/s]\n 89%|████████▉ | 89/100 [00:09<00:01, 9.14it/s]\n 90%|█████████ | 90/100 [00:09<00:01, 9.13it/s]\n 91%|█████████ | 91/100 [00:09<00:00, 9.14it/s]\n 92%|█████████▏| 92/100 [00:09<00:00, 9.11it/s]\n 93%|█████████▎| 93/100 [00:10<00:00, 9.10it/s]\n 94%|█████████▍| 94/100 [00:10<00:00, 9.30it/s]\n 95%|█████████▌| 95/100 [00:10<00:00, 9.40it/s]\n 96%|█████████▌| 96/100 [00:10<00:00, 9.43it/s]\n 97%|█████████▋| 97/100 [00:10<00:00, 9.47it/s]\n 98%|█████████▊| 98/100 [00:10<00:00, 9.30it/s]\n 99%|█████████▉| 99/100 [00:10<00:00, 9.21it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.13it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.25it/s]", "metrics": { "predict_time": 13.199265, "total_time": 13.21507 }, "output": [ "https://replicate.delivery/pbxt/XR5tmpuXHKbPGFAeWeH1f00vfC3rPyCpvWAv3FS3e2UikAQRC/out-0.png" ], "started_at": "2024-01-07T07:13:27.050356Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3nq3ealb6u4l43xgcwgjgob2oi", "cancel": "https://api.replicate.com/v1/predictions/3nq3ealb6u4l43xgcwgjgob2oi/cancel" }, "version": "b6f5a122638ad602aad03838b2f186222f3e47e8edd282ba8332e7ee653e3e1a" }
Generated inUsing seed: 38956 Ensuring enough disk space... Free disk space: 2372819640320 Downloading weights: https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar 2024-01-07T07:13:27Z | INFO | [ Initiating ] dest=/src/weights-cache/18bd246f48942b9b minimum_chunk_size=150M url=https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar 2024-01-07T07:13:28Z | INFO | [ Complete ] dest=/src/weights-cache/18bd246f48942b9b size="186 MB" total_elapsed=1.198s url=https://replicate.delivery/pbxt/fWi9fhKEf6D5mo3UCeb6GZCM1TJcPewSblnk35xAlGTGCtPRC/trained_model.tar b'' Downloaded weights in 1.355332374572754 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: <s0><s1>, artistic illustration, Create art of a Young indian woman surrounded by dark duotone vertical textures glitch image, dramatic and bold contrasts. Incorporate a hint of sepia for a vintage feel txt2img mode 0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<00:17, 5.64it/s] 2%|▏ | 2/100 [00:00<00:13, 7.48it/s] 3%|▎ | 3/100 [00:00<00:11, 8.40it/s] 4%|▍ | 4/100 [00:00<00:10, 8.91it/s] 5%|▌ | 5/100 [00:00<00:10, 9.23it/s] 6%|▌ | 6/100 [00:00<00:09, 9.43it/s] 7%|▋ | 7/100 [00:00<00:09, 9.57it/s] 8%|▊ | 8/100 [00:00<00:09, 9.50it/s] 9%|▉ | 9/100 [00:01<00:09, 9.36it/s] 10%|█ | 10/100 [00:01<00:09, 9.23it/s] 11%|█ | 11/100 [00:01<00:09, 9.20it/s] 12%|█▏ | 12/100 [00:01<00:09, 9.39it/s] 13%|█▎ | 13/100 [00:01<00:09, 9.52it/s] 14%|█▍ | 14/100 [00:01<00:08, 9.61it/s] 15%|█▌ | 15/100 [00:01<00:08, 9.68it/s] 16%|█▌ | 16/100 [00:01<00:08, 9.73it/s] 17%|█▋ | 17/100 [00:01<00:08, 9.56it/s] 18%|█▊ | 18/100 [00:01<00:08, 9.39it/s] 19%|█▉ | 19/100 [00:02<00:08, 9.27it/s] 20%|██ | 20/100 [00:02<00:08, 9.20it/s] 21%|██ | 21/100 [00:02<00:08, 9.17it/s] 22%|██▏ | 22/100 [00:02<00:08, 9.15it/s] 23%|██▎ | 23/100 [00:02<00:08, 9.15it/s] 24%|██▍ | 24/100 [00:02<00:08, 9.14it/s] 25%|██▌ | 25/100 [00:02<00:08, 9.15it/s] 26%|██▌ | 26/100 [00:02<00:08, 9.11it/s] 27%|██▋ | 27/100 [00:02<00:08, 9.07it/s] 28%|██▊ | 28/100 [00:03<00:07, 9.04it/s] 29%|██▉ | 29/100 [00:03<00:07, 9.19it/s] 30%|███ | 30/100 [00:03<00:07, 9.38it/s] 31%|███ | 31/100 [00:03<00:07, 9.51it/s] 32%|███▏ | 32/100 [00:03<00:07, 9.40it/s] 33%|███▎ | 33/100 [00:03<00:07, 9.52it/s] 34%|███▍ | 34/100 [00:03<00:06, 9.62it/s] 35%|███▌ | 35/100 [00:03<00:06, 9.67it/s] 36%|███▌ | 36/100 [00:03<00:06, 9.46it/s] 37%|███▋ | 37/100 [00:04<00:06, 9.27it/s] 38%|███▊ | 38/100 [00:04<00:06, 9.20it/s] 39%|███▉ | 39/100 [00:04<00:06, 9.16it/s] 40%|████ | 40/100 [00:04<00:06, 9.14it/s] 41%|████ | 41/100 [00:04<00:06, 9.12it/s] 42%|████▏ | 42/100 [00:04<00:06, 9.09it/s] 43%|████▎ | 43/100 [00:04<00:06, 9.08it/s] 44%|████▍ | 44/100 [00:04<00:06, 9.07it/s] 45%|████▌ | 45/100 [00:04<00:06, 9.08it/s] 46%|████▌ | 46/100 [00:04<00:05, 9.08it/s] 47%|████▋ | 47/100 [00:05<00:05, 9.10it/s] 48%|████▊ | 48/100 [00:05<00:05, 9.02it/s] 49%|████▉ | 49/100 [00:05<00:05, 8.99it/s] 50%|█████ | 50/100 [00:05<00:05, 8.99it/s] 51%|█████ | 51/100 [00:05<00:05, 8.99it/s] 52%|█████▏ | 52/100 [00:05<00:05, 8.99it/s] 53%|█████▎ | 53/100 [00:05<00:05, 9.03it/s] 54%|█████▍ | 54/100 [00:05<00:05, 9.15it/s] 55%|█████▌ | 55/100 [00:05<00:04, 9.12it/s] 56%|█████▌ | 56/100 [00:06<00:04, 9.11it/s] 57%|█████▋ | 57/100 [00:06<00:04, 9.12it/s] 58%|█████▊ | 58/100 [00:06<00:04, 9.13it/s] 59%|█████▉ | 59/100 [00:06<00:04, 9.12it/s] 60%|██████ | 60/100 [00:06<00:04, 9.10it/s] 61%|██████ | 61/100 [00:06<00:04, 9.26it/s] 62%|██████▏ | 62/100 [00:06<00:04, 9.39it/s] 63%|██████▎ | 63/100 [00:06<00:03, 9.39it/s] 64%|██████▍ | 64/100 [00:06<00:03, 9.45it/s] 65%|██████▌ | 65/100 [00:07<00:03, 9.50it/s] 66%|██████▌ | 66/100 [00:07<00:03, 9.53it/s] 67%|██████▋ | 67/100 [00:07<00:03, 9.59it/s] 68%|██████▊ | 68/100 [00:07<00:03, 9.66it/s] 69%|██████▉ | 69/100 [00:07<00:03, 9.72it/s] 70%|███████ | 70/100 [00:07<00:03, 9.75it/s] 71%|███████ | 71/100 [00:07<00:02, 9.79it/s] 72%|███████▏ | 72/100 [00:07<00:02, 9.81it/s] 73%|███████▎ | 73/100 [00:07<00:02, 9.72it/s] 74%|███████▍ | 74/100 [00:07<00:02, 9.51it/s] 75%|███████▌ | 75/100 [00:08<00:02, 9.40it/s] 76%|███████▌ | 76/100 [00:08<00:02, 9.31it/s] 77%|███████▋ | 77/100 [00:08<00:02, 9.24it/s] 78%|███████▊ | 78/100 [00:08<00:02, 9.41it/s] 79%|███████▉ | 79/100 [00:08<00:02, 9.55it/s] 80%|████████ | 80/100 [00:08<00:02, 9.42it/s] 81%|████████ | 81/100 [00:08<00:02, 9.33it/s] 82%|████████▏ | 82/100 [00:08<00:01, 9.27it/s] 83%|████████▎ | 83/100 [00:08<00:01, 9.22it/s] 84%|████████▍ | 84/100 [00:09<00:01, 9.19it/s] 85%|████████▌ | 85/100 [00:09<00:01, 9.18it/s] 86%|████████▌ | 86/100 [00:09<00:01, 9.17it/s] 87%|████████▋ | 87/100 [00:09<00:01, 9.17it/s] 88%|████████▊ | 88/100 [00:09<00:01, 9.15it/s] 89%|████████▉ | 89/100 [00:09<00:01, 9.14it/s] 90%|█████████ | 90/100 [00:09<00:01, 9.13it/s] 91%|█████████ | 91/100 [00:09<00:00, 9.14it/s] 92%|█████████▏| 92/100 [00:09<00:00, 9.11it/s] 93%|█████████▎| 93/100 [00:10<00:00, 9.10it/s] 94%|█████████▍| 94/100 [00:10<00:00, 9.30it/s] 95%|█████████▌| 95/100 [00:10<00:00, 9.40it/s] 96%|█████████▌| 96/100 [00:10<00:00, 9.43it/s] 97%|█████████▋| 97/100 [00:10<00:00, 9.47it/s] 98%|█████████▊| 98/100 [00:10<00:00, 9.30it/s] 99%|█████████▉| 99/100 [00:10<00:00, 9.21it/s] 100%|██████████| 100/100 [00:10<00:00, 9.13it/s] 100%|██████████| 100/100 [00:10<00:00, 9.25it/s]
Want to make some of these yourself?
Run this model