You're looking at a specific version of this model. Jump to the model overview.
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
| Field | Type | Default value | Description |
|---|---|---|---|
| pcd_source |
None
|
point_head
|
Whether point cloud is generated from the output of the point or depth head. Has no effect if return_pcd is False.
|
| alpha_blend_onto |
None
|
white
|
Blend mode for images with alpha channels. The 'mean' mode blends the image onto ImageNet mean RGB values. The 'keep' mode keeps the original pixel values.
|
| inputs |
array
|
Input files, accepts JPG, JPEG, PNG, WEBP files for images and MP4, AVI, MOV files for video. The input images and sampled video frames will be padded to a single aspect ratio and resized to a maximum dimension of 518 pixels.
|
|
| to_base64 |
boolean
|
True
|
Whether to return the arrays in JSON files as base64 strings with shape and dtype.
|
| return_pcd |
boolean
|
True
|
Whether to return a point cloud file or not.
|
| sampling_rate |
integer
|
24
|
Sampling rate for video input as every n-th frame. Only applies to video inputs. First and last frames of the video will always be included.
|
| keys_to_exclude |
string
|
|
Comma-separated list of keys to exclude from the output JSON files.
|
| weighted_pose_transform |
boolean
|
False
|
Whether to apply a weighted transformation to the predicted camera poses. Used when `enable_pose_postprocessing` is True. Defaults to False.
|
| enable_pose_postprocessing |
boolean
|
False
|
Whether to postprocess the predicted camera poses. If True, the poses will be transformed by fitting unprojected depth to world points. Defaults to False.
|
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{'description': 'Class defining structure of the output.\n'
'\n'
'Attributes:\n'
' point_cloud (Optional[Path]): Path to the GLB point cloud '
'file.\n'
' data (list[Path]): List of paths to the JSON files '
'containing the prediction results.',
'properties': {'data': {'items': {'format': 'uri', 'type': 'string'},
'title': 'Data',
'type': 'array'},
'point_cloud': {'format': 'uri',
'nullable': True,
'title': 'Point Cloud',
'type': 'string'}},
'required': ['data'],
'title': 'PredictorOutput',
'type': 'object'}