You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run warf23/agrat_me using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"warf23/agrat_me:6b56c83db0ea376475c5995c4c0f120253dee3c0270276207ae2f0b3471f4b44",
{
input: {
model: "dev",
prompt: "Casual full-body shot of AGRAT leaning against a holographic whiteboard, sleeves rolled up to reveal glowing wrist tech, warm ambient light emphasizing approachability, flying cars faintly blurred in distance.",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 0.8,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run warf23/agrat_me using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"warf23/agrat_me:6b56c83db0ea376475c5995c4c0f120253dee3c0270276207ae2f0b3471f4b44",
input={
"model": "dev",
"prompt": "Casual full-body shot of AGRAT leaning against a holographic whiteboard, sleeves rolled up to reveal glowing wrist tech, warm ambient light emphasizing approachability, flying cars faintly blurred in distance.",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run warf23/agrat_me using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "warf23/agrat_me:6b56c83db0ea376475c5995c4c0f120253dee3c0270276207ae2f0b3471f4b44",
"input": {
"model": "dev",
"prompt": "Casual full-body shot of AGRAT leaning against a holographic whiteboard, sleeves rolled up to reveal glowing wrist tech, warm ambient light emphasizing approachability, flying cars faintly blurred in distance.",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2025-02-02T16:43:03.733964Z",
"created_at": "2025-02-02T16:42:57.273000Z",
"data_removed": false,
"error": null,
"id": "4gdgnc9qf5rma0cmry5tzz8hm8",
"input": {
"model": "dev",
"prompt": "Casual full-body shot of AGRAT leaning against a holographic whiteboard, sleeves rolled up to reveal glowing wrist tech, warm ambient light emphasizing approachability, flying cars faintly blurred in distance.",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
},
"logs": "2025-02-02 16:42:57.292 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-02-02 16:42:57.292 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2813.85it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2757.36it/s]\n2025-02-02 16:42:57.403 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\n2025-02-02 16:42:57.404 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/fb057d9a6c8e0cbf\n2025-02-02 16:42:57.523 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-02-02 16:42:57.523 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-02-02 16:42:57.523 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2814.82it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2758.46it/s]\n2025-02-02 16:42:57.634 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s\nUsing seed: 59231\n0it [00:00, ?it/s]\n1it [00:00, 8.36it/s]\n2it [00:00, 5.86it/s]\n3it [00:00, 5.35it/s]\n4it [00:00, 5.14it/s]\n5it [00:00, 5.03it/s]\n6it [00:01, 4.94it/s]\n7it [00:01, 4.90it/s]\n8it [00:01, 4.87it/s]\n9it [00:01, 4.85it/s]\n10it [00:01, 4.84it/s]\n11it [00:02, 4.82it/s]\n12it [00:02, 4.82it/s]\n13it [00:02, 4.81it/s]\n14it [00:02, 4.81it/s]\n15it [00:03, 4.81it/s]\n16it [00:03, 4.80it/s]\n17it [00:03, 4.80it/s]\n18it [00:03, 4.81it/s]\n19it [00:03, 4.81it/s]\n20it [00:04, 4.80it/s]\n21it [00:04, 4.80it/s]\n22it [00:04, 4.80it/s]\n23it [00:04, 4.80it/s]\n24it [00:04, 4.81it/s]\n25it [00:05, 4.81it/s]\n26it [00:05, 4.81it/s]\n27it [00:05, 4.80it/s]\n28it [00:05, 4.80it/s]\n28it [00:05, 4.88it/s]\nTotal safe images: 1 out of 1",
"metrics": {
"predict_time": 6.440673378,
"total_time": 6.460964
},
"output": [
"https://replicate.delivery/xezq/2JJCdlUOqkogKdezMzdXBOgwOdIB47y1eLz1gPopTYZXKVLUA/out-0.webp"
],
"started_at": "2025-02-02T16:42:57.293291Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bsvm-ah4y54b6gngptcnj2twctd6czk6jksmn4si3fq6kxiuq634mdb5q",
"get": "https://api.replicate.com/v1/predictions/4gdgnc9qf5rma0cmry5tzz8hm8",
"cancel": "https://api.replicate.com/v1/predictions/4gdgnc9qf5rma0cmry5tzz8hm8/cancel"
},
"version": "6b56c83db0ea376475c5995c4c0f120253dee3c0270276207ae2f0b3471f4b44"
}
2025-02-02 16:42:57.292 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-02-02 16:42:57.292 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2813.85it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2757.36it/s]
2025-02-02 16:42:57.403 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
2025-02-02 16:42:57.404 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/fb057d9a6c8e0cbf
2025-02-02 16:42:57.523 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-02-02 16:42:57.523 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-02-02 16:42:57.523 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2814.82it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2758.46it/s]
2025-02-02 16:42:57.634 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.23s
Using seed: 59231
0it [00:00, ?it/s]
1it [00:00, 8.36it/s]
2it [00:00, 5.86it/s]
3it [00:00, 5.35it/s]
4it [00:00, 5.14it/s]
5it [00:00, 5.03it/s]
6it [00:01, 4.94it/s]
7it [00:01, 4.90it/s]
8it [00:01, 4.87it/s]
9it [00:01, 4.85it/s]
10it [00:01, 4.84it/s]
11it [00:02, 4.82it/s]
12it [00:02, 4.82it/s]
13it [00:02, 4.81it/s]
14it [00:02, 4.81it/s]
15it [00:03, 4.81it/s]
16it [00:03, 4.80it/s]
17it [00:03, 4.80it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.81it/s]
20it [00:04, 4.80it/s]
21it [00:04, 4.80it/s]
22it [00:04, 4.80it/s]
23it [00:04, 4.80it/s]
24it [00:04, 4.81it/s]
25it [00:05, 4.81it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.80it/s]
28it [00:05, 4.80it/s]
28it [00:05, 4.88it/s]
Total safe images: 1 out of 1