workroomprds / bartbooth1
Exploring the training and use of DreamBooth, with Bart as a subject
- Public
- 305 runs
Prediction
workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56IDxhpv7hxqxbfj3gah6warmssdgmStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson
- scheduler
- DDIM
- num_outputs
- "4"
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", { input: { width: 512, height: 512, prompt: "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", scheduler: "DDIM", num_outputs: "4", guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", input={ "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", "input": { "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-02-22T23:49:57.394258Z", "created_at": "2023-02-22T23:43:53.349958Z", "data_removed": false, "error": null, "id": "xhpv7hxqxbfj3gah6warmssdgm", "input": { "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 51805\nusing txt2img\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:03<03:04, 3.76s/it]\n 4%|▍ | 2/50 [00:04<01:33, 1.96s/it]\n 6%|▌ | 3/50 [00:05<01:04, 1.37s/it]\n 8%|▊ | 4/50 [00:05<00:50, 1.11s/it]\n 10%|█ | 5/50 [00:06<00:43, 1.04it/s]\n 12%|█▏ | 6/50 [00:07<00:38, 1.15it/s]\n 14%|█▍ | 7/50 [00:07<00:35, 1.23it/s]\n 16%|█▌ | 8/50 [00:08<00:32, 1.28it/s]\n 18%|█▊ | 9/50 [00:09<00:30, 1.32it/s]\n 20%|██ | 10/50 [00:10<00:29, 1.35it/s]\n 22%|██▏ | 11/50 [00:10<00:28, 1.37it/s]\n 24%|██▍ | 12/50 [00:11<00:27, 1.38it/s]\n 26%|██▌ | 13/50 [00:12<00:26, 1.39it/s]\n 28%|██▊ | 14/50 [00:12<00:25, 1.40it/s]\n 30%|███ | 15/50 [00:13<00:25, 1.40it/s]\n 32%|███▏ | 16/50 [00:14<00:24, 1.40it/s]\n 34%|███▍ | 17/50 [00:15<00:23, 1.41it/s]\n 36%|███▌ | 18/50 [00:15<00:22, 1.41it/s]\n 38%|███▊ | 19/50 [00:16<00:21, 1.41it/s]\n 40%|████ | 20/50 [00:17<00:21, 1.41it/s]\n 42%|████▏ | 21/50 [00:17<00:20, 1.41it/s]\n 44%|████▍ | 22/50 [00:18<00:19, 1.41it/s]\n 46%|████▌ | 23/50 [00:19<00:19, 1.41it/s]\n 48%|████▊ | 24/50 [00:19<00:18, 1.41it/s]\n 50%|█████ | 25/50 [00:20<00:17, 1.40it/s]\n 52%|█████▏ | 26/50 [00:21<00:17, 1.40it/s]\n 54%|█████▍ | 27/50 [00:22<00:16, 1.40it/s]\n 56%|█████▌ | 28/50 [00:22<00:15, 1.40it/s]\n 58%|█████▊ | 29/50 [00:23<00:15, 1.39it/s]\n 60%|██████ | 30/50 [00:24<00:14, 1.39it/s]\n 62%|██████▏ | 31/50 [00:25<00:13, 1.38it/s]\n 64%|██████▍ | 32/50 [00:25<00:13, 1.38it/s]\n 66%|██████▌ | 33/50 [00:26<00:12, 1.38it/s]\n 68%|██████▊ | 34/50 [00:27<00:11, 1.37it/s]\n 70%|███████ | 35/50 [00:27<00:10, 1.37it/s]\n 72%|███████▏ | 36/50 [00:28<00:10, 1.37it/s]\n 74%|███████▍ | 37/50 [00:29<00:09, 1.36it/s]\n 76%|███████▌ | 38/50 [00:30<00:08, 1.36it/s]\n 78%|███████▊ | 39/50 [00:30<00:08, 1.36it/s]\n 80%|████████ | 40/50 [00:31<00:07, 1.35it/s]\n 82%|████████▏ | 41/50 [00:32<00:06, 1.34it/s]\n 84%|████████▍ | 42/50 [00:33<00:05, 1.34it/s]\n 86%|████████▌ | 43/50 [00:33<00:05, 1.34it/s]\n 88%|████████▊ | 44/50 [00:34<00:04, 1.34it/s]\n 90%|█████████ | 45/50 [00:35<00:03, 1.34it/s]\n 92%|█████████▏| 46/50 [00:36<00:02, 1.34it/s]\n 94%|█████████▍| 47/50 [00:36<00:02, 1.33it/s]\n 96%|█████████▌| 48/50 [00:37<00:01, 1.33it/s]\n 98%|█████████▊| 49/50 [00:38<00:00, 1.32it/s]\n100%|██████████| 50/50 [00:39<00:00, 1.32it/s]\n100%|██████████| 50/50 [00:39<00:00, 1.28it/s]", "metrics": { "predict_time": 46.418056, "total_time": 364.0443 }, "output": [ "https://replicate.delivery/pbxt/JNsLIXNWfVTEO6w6ztScvYjnqeIcWHvSdWFG4sUmWS6iwFhQA/out-0.png", "https://replicate.delivery/pbxt/PEN585QbKUJHBFBkZ04JtYXYzhvesOU4MZzNSLXBtAuR4iQIA/out-1.png", "https://replicate.delivery/pbxt/zTTD2eSfRDsHyEe2HDYEwzvvstmmsjogPP3Em7gWe0FQCXECB/out-2.png", "https://replicate.delivery/pbxt/qxdcCSxSANpFEBy8HEgNzBGfrKsfxcf678H9Txtu0x5JhLChA/out-3.png" ], "started_at": "2023-02-22T23:49:10.976202Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xhpv7hxqxbfj3gah6warmssdgm", "cancel": "https://api.replicate.com/v1/predictions/xhpv7hxqxbfj3gah6warmssdgm/cancel" }, "version": "128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56" }
Generated inUsing seed: 51805 using txt2img 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:03<03:04, 3.76s/it] 4%|▍ | 2/50 [00:04<01:33, 1.96s/it] 6%|▌ | 3/50 [00:05<01:04, 1.37s/it] 8%|▊ | 4/50 [00:05<00:50, 1.11s/it] 10%|█ | 5/50 [00:06<00:43, 1.04it/s] 12%|█▏ | 6/50 [00:07<00:38, 1.15it/s] 14%|█▍ | 7/50 [00:07<00:35, 1.23it/s] 16%|█▌ | 8/50 [00:08<00:32, 1.28it/s] 18%|█▊ | 9/50 [00:09<00:30, 1.32it/s] 20%|██ | 10/50 [00:10<00:29, 1.35it/s] 22%|██▏ | 11/50 [00:10<00:28, 1.37it/s] 24%|██▍ | 12/50 [00:11<00:27, 1.38it/s] 26%|██▌ | 13/50 [00:12<00:26, 1.39it/s] 28%|██▊ | 14/50 [00:12<00:25, 1.40it/s] 30%|███ | 15/50 [00:13<00:25, 1.40it/s] 32%|███▏ | 16/50 [00:14<00:24, 1.40it/s] 34%|███▍ | 17/50 [00:15<00:23, 1.41it/s] 36%|███▌ | 18/50 [00:15<00:22, 1.41it/s] 38%|███▊ | 19/50 [00:16<00:21, 1.41it/s] 40%|████ | 20/50 [00:17<00:21, 1.41it/s] 42%|████▏ | 21/50 [00:17<00:20, 1.41it/s] 44%|████▍ | 22/50 [00:18<00:19, 1.41it/s] 46%|████▌ | 23/50 [00:19<00:19, 1.41it/s] 48%|████▊ | 24/50 [00:19<00:18, 1.41it/s] 50%|█████ | 25/50 [00:20<00:17, 1.40it/s] 52%|█████▏ | 26/50 [00:21<00:17, 1.40it/s] 54%|█████▍ | 27/50 [00:22<00:16, 1.40it/s] 56%|█████▌ | 28/50 [00:22<00:15, 1.40it/s] 58%|█████▊ | 29/50 [00:23<00:15, 1.39it/s] 60%|██████ | 30/50 [00:24<00:14, 1.39it/s] 62%|██████▏ | 31/50 [00:25<00:13, 1.38it/s] 64%|██████▍ | 32/50 [00:25<00:13, 1.38it/s] 66%|██████▌ | 33/50 [00:26<00:12, 1.38it/s] 68%|██████▊ | 34/50 [00:27<00:11, 1.37it/s] 70%|███████ | 35/50 [00:27<00:10, 1.37it/s] 72%|███████▏ | 36/50 [00:28<00:10, 1.37it/s] 74%|███████▍ | 37/50 [00:29<00:09, 1.36it/s] 76%|███████▌ | 38/50 [00:30<00:08, 1.36it/s] 78%|███████▊ | 39/50 [00:30<00:08, 1.36it/s] 80%|████████ | 40/50 [00:31<00:07, 1.35it/s] 82%|████████▏ | 41/50 [00:32<00:06, 1.34it/s] 84%|████████▍ | 42/50 [00:33<00:05, 1.34it/s] 86%|████████▌ | 43/50 [00:33<00:05, 1.34it/s] 88%|████████▊ | 44/50 [00:34<00:04, 1.34it/s] 90%|█████████ | 45/50 [00:35<00:03, 1.34it/s] 92%|█████████▏| 46/50 [00:36<00:02, 1.34it/s] 94%|█████████▍| 47/50 [00:36<00:02, 1.33it/s] 96%|█████████▌| 48/50 [00:37<00:01, 1.33it/s] 98%|█████████▊| 49/50 [00:38<00:00, 1.32it/s] 100%|██████████| 50/50 [00:39<00:00, 1.32it/s] 100%|██████████| 50/50 [00:39<00:00, 1.28it/s]
Prediction
workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56IDcdcz2r7fprhzvcul7tmwjli4k4StatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson
- scheduler
- DDIM
- num_outputs
- "4"
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", { input: { width: 512, height: 512, prompt: "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", scheduler: "DDIM", num_outputs: "4", guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", input={ "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", "input": { "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-02-23T00:11:06.353915Z", "created_at": "2023-02-23T00:06:20.947905Z", "data_removed": false, "error": null, "id": "cdcz2r7fprhzvcul7tmwjli4k4", "input": { "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 10677\nusing txt2img\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:03<02:32, 3.11s/it]\n 4%|▍ | 2/50 [00:03<01:19, 1.66s/it]\n 6%|▌ | 3/50 [00:04<00:56, 1.19s/it]\n 8%|▊ | 4/50 [00:05<00:45, 1.02it/s]\n 10%|█ | 5/50 [00:05<00:38, 1.16it/s]\n 12%|█▏ | 6/50 [00:06<00:34, 1.27it/s]\n 14%|█▍ | 7/50 [00:07<00:32, 1.34it/s]\n 16%|█▌ | 8/50 [00:07<00:29, 1.40it/s]\n 18%|█▊ | 9/50 [00:08<00:28, 1.44it/s]\n 20%|██ | 10/50 [00:08<00:27, 1.48it/s]\n 22%|██▏ | 11/50 [00:09<00:26, 1.49it/s]\n 24%|██▍ | 12/50 [00:10<00:25, 1.51it/s]\n 26%|██▌ | 13/50 [00:10<00:24, 1.52it/s]\n 28%|██▊ | 14/50 [00:11<00:23, 1.52it/s]\n 30%|███ | 15/50 [00:12<00:22, 1.53it/s]\n 32%|███▏ | 16/50 [00:12<00:22, 1.53it/s]\n 34%|███▍ | 17/50 [00:13<00:21, 1.54it/s]\n 36%|███▌ | 18/50 [00:14<00:20, 1.54it/s]\n 38%|███▊ | 19/50 [00:14<00:20, 1.54it/s]\n 40%|████ | 20/50 [00:15<00:19, 1.54it/s]\n 42%|████▏ | 21/50 [00:16<00:18, 1.54it/s]\n 44%|████▍ | 22/50 [00:16<00:18, 1.54it/s]\n 46%|████▌ | 23/50 [00:17<00:17, 1.54it/s]\n 48%|████▊ | 24/50 [00:18<00:17, 1.53it/s]\n 50%|█████ | 25/50 [00:18<00:16, 1.53it/s]\n 52%|█████▏ | 26/50 [00:19<00:15, 1.54it/s]\n 54%|█████▍ | 27/50 [00:19<00:14, 1.54it/s]\n 56%|█████▌ | 28/50 [00:20<00:14, 1.54it/s]\n 58%|█████▊ | 29/50 [00:21<00:13, 1.54it/s]\n 60%|██████ | 30/50 [00:21<00:12, 1.54it/s]\n 62%|██████▏ | 31/50 [00:22<00:12, 1.54it/s]\n 64%|██████▍ | 32/50 [00:23<00:11, 1.54it/s]\n 66%|██████▌ | 33/50 [00:23<00:11, 1.54it/s]\n 68%|██████▊ | 34/50 [00:24<00:10, 1.53it/s]\n 70%|███████ | 35/50 [00:25<00:09, 1.53it/s]\n 72%|███████▏ | 36/50 [00:25<00:09, 1.53it/s]\n 74%|███████▍ | 37/50 [00:26<00:08, 1.52it/s]\n 76%|███████▌ | 38/50 [00:27<00:07, 1.52it/s]\n 78%|███████▊ | 39/50 [00:27<00:07, 1.52it/s]\n 80%|████████ | 40/50 [00:28<00:06, 1.52it/s]\n 82%|████████▏ | 41/50 [00:29<00:05, 1.52it/s]\n 84%|████████▍ | 42/50 [00:29<00:05, 1.52it/s]\n 86%|████████▌ | 43/50 [00:30<00:04, 1.51it/s]\n 88%|████████▊ | 44/50 [00:31<00:03, 1.51it/s]\n 90%|█████████ | 45/50 [00:31<00:03, 1.51it/s]\n 92%|█████████▏| 46/50 [00:32<00:02, 1.51it/s]\n 94%|█████████▍| 47/50 [00:33<00:01, 1.52it/s]\n 96%|█████████▌| 48/50 [00:33<00:01, 1.51it/s]\n 98%|█████████▊| 49/50 [00:34<00:00, 1.51it/s]\n100%|██████████| 50/50 [00:35<00:00, 1.51it/s]\n100%|██████████| 50/50 [00:35<00:00, 1.42it/s]", "metrics": { "predict_time": 41.960707, "total_time": 285.40601 }, "output": [ "https://replicate.delivery/pbxt/hWQ2P7ogPBqQORwe32LHEAxTVLNJemX4upBF3G6rpnNXEGhQA/out-0.png", "https://replicate.delivery/pbxt/vKeILmOlfIqOWUfv3UiJHIAZi6Cgi4O25wwfYpKA34ziRYECB/out-1.png", "https://replicate.delivery/pbxt/5jf8HcQsqFT7Bi6lHyTiP6gf9m3oKTQSeKX2WJ2BW5DzIMChA/out-2.png", "https://replicate.delivery/pbxt/l6eP7W7s9ftluUfTNq3eTCeF5INLk7qMXKgxttbn3JMPjwIEC/out-3.png" ], "started_at": "2023-02-23T00:10:24.393208Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/cdcz2r7fprhzvcul7tmwjli4k4", "cancel": "https://api.replicate.com/v1/predictions/cdcz2r7fprhzvcul7tmwjli4k4/cancel" }, "version": "128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56" }
Generated inUsing seed: 10677 using txt2img 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:03<02:32, 3.11s/it] 4%|▍ | 2/50 [00:03<01:19, 1.66s/it] 6%|▌ | 3/50 [00:04<00:56, 1.19s/it] 8%|▊ | 4/50 [00:05<00:45, 1.02it/s] 10%|█ | 5/50 [00:05<00:38, 1.16it/s] 12%|█▏ | 6/50 [00:06<00:34, 1.27it/s] 14%|█▍ | 7/50 [00:07<00:32, 1.34it/s] 16%|█▌ | 8/50 [00:07<00:29, 1.40it/s] 18%|█▊ | 9/50 [00:08<00:28, 1.44it/s] 20%|██ | 10/50 [00:08<00:27, 1.48it/s] 22%|██▏ | 11/50 [00:09<00:26, 1.49it/s] 24%|██▍ | 12/50 [00:10<00:25, 1.51it/s] 26%|██▌ | 13/50 [00:10<00:24, 1.52it/s] 28%|██▊ | 14/50 [00:11<00:23, 1.52it/s] 30%|███ | 15/50 [00:12<00:22, 1.53it/s] 32%|███▏ | 16/50 [00:12<00:22, 1.53it/s] 34%|███▍ | 17/50 [00:13<00:21, 1.54it/s] 36%|███▌ | 18/50 [00:14<00:20, 1.54it/s] 38%|███▊ | 19/50 [00:14<00:20, 1.54it/s] 40%|████ | 20/50 [00:15<00:19, 1.54it/s] 42%|████▏ | 21/50 [00:16<00:18, 1.54it/s] 44%|████▍ | 22/50 [00:16<00:18, 1.54it/s] 46%|████▌ | 23/50 [00:17<00:17, 1.54it/s] 48%|████▊ | 24/50 [00:18<00:17, 1.53it/s] 50%|█████ | 25/50 [00:18<00:16, 1.53it/s] 52%|█████▏ | 26/50 [00:19<00:15, 1.54it/s] 54%|█████▍ | 27/50 [00:19<00:14, 1.54it/s] 56%|█████▌ | 28/50 [00:20<00:14, 1.54it/s] 58%|█████▊ | 29/50 [00:21<00:13, 1.54it/s] 60%|██████ | 30/50 [00:21<00:12, 1.54it/s] 62%|██████▏ | 31/50 [00:22<00:12, 1.54it/s] 64%|██████▍ | 32/50 [00:23<00:11, 1.54it/s] 66%|██████▌ | 33/50 [00:23<00:11, 1.54it/s] 68%|██████▊ | 34/50 [00:24<00:10, 1.53it/s] 70%|███████ | 35/50 [00:25<00:09, 1.53it/s] 72%|███████▏ | 36/50 [00:25<00:09, 1.53it/s] 74%|███████▍ | 37/50 [00:26<00:08, 1.52it/s] 76%|███████▌ | 38/50 [00:27<00:07, 1.52it/s] 78%|███████▊ | 39/50 [00:27<00:07, 1.52it/s] 80%|████████ | 40/50 [00:28<00:06, 1.52it/s] 82%|████████▏ | 41/50 [00:29<00:05, 1.52it/s] 84%|████████▍ | 42/50 [00:29<00:05, 1.52it/s] 86%|████████▌ | 43/50 [00:30<00:04, 1.51it/s] 88%|████████▊ | 44/50 [00:31<00:03, 1.51it/s] 90%|█████████ | 45/50 [00:31<00:03, 1.51it/s] 92%|█████████▏| 46/50 [00:32<00:02, 1.51it/s] 94%|█████████▍| 47/50 [00:33<00:01, 1.52it/s] 96%|█████████▌| 48/50 [00:33<00:01, 1.51it/s] 98%|█████████▊| 49/50 [00:34<00:00, 1.51it/s] 100%|██████████| 50/50 [00:35<00:00, 1.51it/s] 100%|██████████| 50/50 [00:35<00:00, 1.42it/s]
Prediction
workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56IDdnnyhgm7fbg6piisxf3bew24u4StatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson
- scheduler
- DDIM
- num_outputs
- "4"
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", { input: { width: 512, height: 512, prompt: "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", scheduler: "DDIM", num_outputs: "4", guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", input={ "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run workroomprds/bartbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "workroomprds/bartbooth1:128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56", "input": { "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-02-23T00:14:48.462764Z", "created_at": "2023-02-23T00:11:48.851029Z", "data_removed": false, "error": null, "id": "dnnyhgm7fbg6piisxf3bew24u4", "input": { "width": 512, "height": 512, "prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a btknaack person in space wearing a stetson", "scheduler": "DDIM", "num_outputs": "4", "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 59463\nusing txt2img\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:03<02:32, 3.12s/it]\n 4%|▍ | 2/50 [00:03<01:19, 1.66s/it]\n 6%|▌ | 3/50 [00:04<00:56, 1.20s/it]\n 8%|▊ | 4/50 [00:05<00:45, 1.02it/s]\n 10%|█ | 5/50 [00:05<00:38, 1.17it/s]\n 12%|█▏ | 6/50 [00:06<00:34, 1.27it/s]\n 14%|█▍ | 7/50 [00:06<00:31, 1.36it/s]\n 16%|█▌ | 8/50 [00:07<00:29, 1.41it/s]\n 18%|█▊ | 9/50 [00:08<00:28, 1.45it/s]\n 20%|██ | 10/50 [00:08<00:27, 1.47it/s]\n 22%|██▏ | 11/50 [00:09<00:26, 1.49it/s]\n 24%|██▍ | 12/50 [00:10<00:25, 1.51it/s]\n 26%|██▌ | 13/50 [00:10<00:24, 1.52it/s]\n 28%|██▊ | 14/50 [00:11<00:23, 1.52it/s]\n 30%|███ | 15/50 [00:12<00:22, 1.53it/s]\n 32%|███▏ | 16/50 [00:12<00:22, 1.53it/s]\n 34%|███▍ | 17/50 [00:13<00:21, 1.54it/s]\n 36%|███▌ | 18/50 [00:14<00:20, 1.54it/s]\n 38%|███▊ | 19/50 [00:14<00:20, 1.54it/s]\n 40%|████ | 20/50 [00:15<00:19, 1.54it/s]\n 42%|████▏ | 21/50 [00:16<00:18, 1.54it/s]\n 44%|████▍ | 22/50 [00:16<00:18, 1.54it/s]\n 46%|████▌ | 23/50 [00:17<00:17, 1.54it/s]\n 48%|████▊ | 24/50 [00:18<00:16, 1.54it/s]\n 50%|█████ | 25/50 [00:18<00:16, 1.54it/s]\n 52%|█████▏ | 26/50 [00:19<00:15, 1.54it/s]\n 54%|█████▍ | 27/50 [00:19<00:14, 1.54it/s]\n 56%|█████▌ | 28/50 [00:20<00:14, 1.53it/s]\n 58%|█████▊ | 29/50 [00:21<00:13, 1.53it/s]\n 60%|██████ | 30/50 [00:21<00:13, 1.53it/s]\n 62%|██████▏ | 31/50 [00:22<00:12, 1.53it/s]\n 64%|██████▍ | 32/50 [00:23<00:11, 1.53it/s]\n 66%|██████▌ | 33/50 [00:23<00:11, 1.53it/s]\n 68%|██████▊ | 34/50 [00:24<00:10, 1.53it/s]\n 70%|███████ | 35/50 [00:25<00:09, 1.53it/s]\n 72%|███████▏ | 36/50 [00:25<00:09, 1.53it/s]\n 74%|███████▍ | 37/50 [00:26<00:08, 1.53it/s]\n 76%|███████▌ | 38/50 [00:27<00:07, 1.53it/s]\n 78%|███████▊ | 39/50 [00:27<00:07, 1.53it/s]\n 80%|████████ | 40/50 [00:28<00:06, 1.53it/s]\n 82%|████████▏ | 41/50 [00:29<00:05, 1.53it/s]\n 84%|████████▍ | 42/50 [00:29<00:05, 1.52it/s]\n 86%|████████▌ | 43/50 [00:30<00:04, 1.52it/s]\n 88%|████████▊ | 44/50 [00:31<00:03, 1.52it/s]\n 90%|█████████ | 45/50 [00:31<00:03, 1.52it/s]\n 92%|█████████▏| 46/50 [00:32<00:02, 1.52it/s]\n 94%|█████████▍| 47/50 [00:33<00:01, 1.52it/s]\n 96%|█████████▌| 48/50 [00:33<00:01, 1.52it/s]\n 98%|█████████▊| 49/50 [00:34<00:00, 1.52it/s]\n100%|██████████| 50/50 [00:35<00:00, 1.52it/s]\n100%|██████████| 50/50 [00:35<00:00, 1.43it/s]", "metrics": { "predict_time": 41.739775, "total_time": 179.611735 }, "output": [ "https://replicate.delivery/pbxt/3HW8b5XZyVatHlDnlCTrfQep9EZBaUXOrifVkfQfIRWtehRIE/out-0.png", "https://replicate.delivery/pbxt/8fBSGNB9rgy5FKuH2KYpdxBewBsaUT7zFFxWGPqf6NBsPMChA/out-1.png", "https://replicate.delivery/pbxt/gX4DkYujnexkOKs4F3KjSOoxSCTC1h4eFPVxNwhVIVz3HGhQA/out-2.png", "https://replicate.delivery/pbxt/rJbKJZKjgp6TCFFzSQIsMDp8Xd4LXfBsH1NE1QJv0Fv7DjQIA/out-3.png" ], "started_at": "2023-02-23T00:14:06.722989Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/dnnyhgm7fbg6piisxf3bew24u4", "cancel": "https://api.replicate.com/v1/predictions/dnnyhgm7fbg6piisxf3bew24u4/cancel" }, "version": "128875f4686be631dd87560aad04ede13582db96732753436d2543a5371e1b56" }
Generated inUsing seed: 59463 using txt2img 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:03<02:32, 3.12s/it] 4%|▍ | 2/50 [00:03<01:19, 1.66s/it] 6%|▌ | 3/50 [00:04<00:56, 1.20s/it] 8%|▊ | 4/50 [00:05<00:45, 1.02it/s] 10%|█ | 5/50 [00:05<00:38, 1.17it/s] 12%|█▏ | 6/50 [00:06<00:34, 1.27it/s] 14%|█▍ | 7/50 [00:06<00:31, 1.36it/s] 16%|█▌ | 8/50 [00:07<00:29, 1.41it/s] 18%|█▊ | 9/50 [00:08<00:28, 1.45it/s] 20%|██ | 10/50 [00:08<00:27, 1.47it/s] 22%|██▏ | 11/50 [00:09<00:26, 1.49it/s] 24%|██▍ | 12/50 [00:10<00:25, 1.51it/s] 26%|██▌ | 13/50 [00:10<00:24, 1.52it/s] 28%|██▊ | 14/50 [00:11<00:23, 1.52it/s] 30%|███ | 15/50 [00:12<00:22, 1.53it/s] 32%|███▏ | 16/50 [00:12<00:22, 1.53it/s] 34%|███▍ | 17/50 [00:13<00:21, 1.54it/s] 36%|███▌ | 18/50 [00:14<00:20, 1.54it/s] 38%|███▊ | 19/50 [00:14<00:20, 1.54it/s] 40%|████ | 20/50 [00:15<00:19, 1.54it/s] 42%|████▏ | 21/50 [00:16<00:18, 1.54it/s] 44%|████▍ | 22/50 [00:16<00:18, 1.54it/s] 46%|████▌ | 23/50 [00:17<00:17, 1.54it/s] 48%|████▊ | 24/50 [00:18<00:16, 1.54it/s] 50%|█████ | 25/50 [00:18<00:16, 1.54it/s] 52%|█████▏ | 26/50 [00:19<00:15, 1.54it/s] 54%|█████▍ | 27/50 [00:19<00:14, 1.54it/s] 56%|█████▌ | 28/50 [00:20<00:14, 1.53it/s] 58%|█████▊ | 29/50 [00:21<00:13, 1.53it/s] 60%|██████ | 30/50 [00:21<00:13, 1.53it/s] 62%|██████▏ | 31/50 [00:22<00:12, 1.53it/s] 64%|██████▍ | 32/50 [00:23<00:11, 1.53it/s] 66%|██████▌ | 33/50 [00:23<00:11, 1.53it/s] 68%|██████▊ | 34/50 [00:24<00:10, 1.53it/s] 70%|███████ | 35/50 [00:25<00:09, 1.53it/s] 72%|███████▏ | 36/50 [00:25<00:09, 1.53it/s] 74%|███████▍ | 37/50 [00:26<00:08, 1.53it/s] 76%|███████▌ | 38/50 [00:27<00:07, 1.53it/s] 78%|███████▊ | 39/50 [00:27<00:07, 1.53it/s] 80%|████████ | 40/50 [00:28<00:06, 1.53it/s] 82%|████████▏ | 41/50 [00:29<00:05, 1.53it/s] 84%|████████▍ | 42/50 [00:29<00:05, 1.52it/s] 86%|████████▌ | 43/50 [00:30<00:04, 1.52it/s] 88%|████████▊ | 44/50 [00:31<00:03, 1.52it/s] 90%|█████████ | 45/50 [00:31<00:03, 1.52it/s] 92%|█████████▏| 46/50 [00:32<00:02, 1.52it/s] 94%|█████████▍| 47/50 [00:33<00:01, 1.52it/s] 96%|█████████▌| 48/50 [00:33<00:01, 1.52it/s] 98%|█████████▊| 49/50 [00:34<00:00, 1.52it/s] 100%|██████████| 50/50 [00:35<00:00, 1.52it/s] 100%|██████████| 50/50 [00:35<00:00, 1.43it/s]
Want to make some of these yourself?
Run this model