Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run xghm/sdxl-rambothepuppy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"xghm/sdxl-rambothepuppy:a543459be27fbd039db2ed0e7f30a8dbb6e266caefa2dd9aa520b1e949f2ec8d",
{
input: {
width: 1024,
height: 1024,
prompt: "a photo of a TOK dog dressed up with Christmas decoration",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.7,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.95,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run xghm/sdxl-rambothepuppy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"xghm/sdxl-rambothepuppy:a543459be27fbd039db2ed0e7f30a8dbb6e266caefa2dd9aa520b1e949f2ec8d",
input={
"width": 1024,
"height": 1024,
"prompt": "a photo of a TOK dog dressed up with Christmas decoration",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.7,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.95,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run xghm/sdxl-rambothepuppy using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "xghm/sdxl-rambothepuppy:a543459be27fbd039db2ed0e7f30a8dbb6e266caefa2dd9aa520b1e949f2ec8d",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a photo of a TOK dog dressed up with Christmas decoration",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.7,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.95,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-11-22T08:30:15.596702Z",
"created_at": "2023-11-22T08:29:35.665216Z",
"data_removed": false,
"error": null,
"id": "vyri6r3bgvot2eyfhynamxn76e",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a photo of a TOK dog dressed up with Christmas decoration",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.7,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.95,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 14598\nEnsuring enough disk space...\nFree disk space: 1793721384960\nDownloading weights: https://replicate.delivery/pbxt/Ps0dz8eckOQwMym14P7tuR66VU9lgCr5OMYUEzFeBatwq26RA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.290s (641 MB/s)\\nExtracted 186 MB in 0.066s (2.8 GB/s)\\n'\nDownloaded weights in 0.5348246097564697 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a photo of a <s0><s1> dog dressed up with Christmas decoration\ntxt2img mode\n 0%| | 0/47 [00:00<?, ?it/s]\n 2%|▏ | 1/47 [00:00<00:12, 3.66it/s]\n 4%|▍ | 2/47 [00:00<00:12, 3.65it/s]\n 6%|▋ | 3/47 [00:00<00:12, 3.65it/s]\n 9%|▊ | 4/47 [00:01<00:11, 3.65it/s]\n 11%|█ | 5/47 [00:01<00:11, 3.65it/s]\n 13%|█▎ | 6/47 [00:01<00:11, 3.65it/s]\n 15%|█▍ | 7/47 [00:01<00:10, 3.65it/s]\n 17%|█▋ | 8/47 [00:02<00:10, 3.65it/s]\n 19%|█▉ | 9/47 [00:02<00:10, 3.66it/s]\n 21%|██▏ | 10/47 [00:02<00:10, 3.66it/s]\n 23%|██▎ | 11/47 [00:03<00:09, 3.66it/s]\n 26%|██▌ | 12/47 [00:03<00:09, 3.65it/s]\n 28%|██▊ | 13/47 [00:03<00:09, 3.65it/s]\n 30%|██▉ | 14/47 [00:03<00:09, 3.65it/s]\n 32%|███▏ | 15/47 [00:04<00:08, 3.65it/s]\n 34%|███▍ | 16/47 [00:04<00:08, 3.65it/s]\n 36%|███▌ | 17/47 [00:04<00:08, 3.65it/s]\n 38%|███▊ | 18/47 [00:04<00:07, 3.65it/s]\n 40%|████ | 19/47 [00:05<00:07, 3.65it/s]\n 43%|████▎ | 20/47 [00:05<00:07, 3.65it/s]\n 45%|████▍ | 21/47 [00:05<00:07, 3.64it/s]\n 47%|████▋ | 22/47 [00:06<00:06, 3.64it/s]\n 49%|████▉ | 23/47 [00:06<00:06, 3.65it/s]\n 51%|█████ | 24/47 [00:06<00:06, 3.65it/s]\n 53%|█████▎ | 25/47 [00:06<00:06, 3.65it/s]\n 55%|█████▌ | 26/47 [00:07<00:05, 3.65it/s]\n 57%|█████▋ | 27/47 [00:07<00:05, 3.65it/s]\n 60%|█████▉ | 28/47 [00:07<00:05, 3.64it/s]\n 62%|██████▏ | 29/47 [00:07<00:04, 3.64it/s]\n 64%|██████▍ | 30/47 [00:08<00:04, 3.65it/s]\n 66%|██████▌ | 31/47 [00:08<00:04, 3.65it/s]\n 68%|██████▊ | 32/47 [00:08<00:04, 3.64it/s]\n 70%|███████ | 33/47 [00:09<00:03, 3.64it/s]\n 72%|███████▏ | 34/47 [00:09<00:03, 3.64it/s]\n 74%|███████▍ | 35/47 [00:09<00:03, 3.64it/s]\n 77%|███████▋ | 36/47 [00:09<00:03, 3.64it/s]\n 79%|███████▊ | 37/47 [00:10<00:02, 3.64it/s]\n 81%|████████ | 38/47 [00:10<00:02, 3.64it/s]\n 83%|████████▎ | 39/47 [00:10<00:02, 3.64it/s]\n 85%|████████▌ | 40/47 [00:10<00:01, 3.64it/s]\n 87%|████████▋ | 41/47 [00:11<00:01, 3.64it/s]\n 89%|████████▉ | 42/47 [00:11<00:01, 3.64it/s]\n 91%|█████████▏| 43/47 [00:11<00:01, 3.64it/s]\n 94%|█████████▎| 44/47 [00:12<00:00, 3.64it/s]\n 96%|█████████▌| 45/47 [00:12<00:00, 3.64it/s]\n 98%|█████████▊| 46/47 [00:12<00:00, 3.64it/s]\n100%|██████████| 47/47 [00:12<00:00, 3.64it/s]\n100%|██████████| 47/47 [00:12<00:00, 3.65it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.24it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.22it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.23it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.23it/s]",
"metrics": {
"predict_time": 16.398418,
"total_time": 39.931486
},
"output": [
"https://replicate.delivery/pbxt/BbtAlCm1ldpmPNVPkzURLZjhGA0tVWVU7iibjVf2edMX426RA/out-0.png"
],
"started_at": "2023-11-22T08:29:59.198284Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/vyri6r3bgvot2eyfhynamxn76e",
"cancel": "https://api.replicate.com/v1/predictions/vyri6r3bgvot2eyfhynamxn76e/cancel"
},
"version": "a543459be27fbd039db2ed0e7f30a8dbb6e266caefa2dd9aa520b1e949f2ec8d"
}
Using seed: 14598
Ensuring enough disk space...
Free disk space: 1793721384960
Downloading weights: https://replicate.delivery/pbxt/Ps0dz8eckOQwMym14P7tuR66VU9lgCr5OMYUEzFeBatwq26RA/trained_model.tar
b'Downloaded 186 MB bytes in 0.290s (641 MB/s)\nExtracted 186 MB in 0.066s (2.8 GB/s)\n'
Downloaded weights in 0.5348246097564697 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a photo of a <s0><s1> dog dressed up with Christmas decoration
txt2img mode
0%| | 0/47 [00:00<?, ?it/s]
2%|▏ | 1/47 [00:00<00:12, 3.66it/s]
4%|▍ | 2/47 [00:00<00:12, 3.65it/s]
6%|▋ | 3/47 [00:00<00:12, 3.65it/s]
9%|▊ | 4/47 [00:01<00:11, 3.65it/s]
11%|█ | 5/47 [00:01<00:11, 3.65it/s]
13%|█▎ | 6/47 [00:01<00:11, 3.65it/s]
15%|█▍ | 7/47 [00:01<00:10, 3.65it/s]
17%|█▋ | 8/47 [00:02<00:10, 3.65it/s]
19%|█▉ | 9/47 [00:02<00:10, 3.66it/s]
21%|██▏ | 10/47 [00:02<00:10, 3.66it/s]
23%|██▎ | 11/47 [00:03<00:09, 3.66it/s]
26%|██▌ | 12/47 [00:03<00:09, 3.65it/s]
28%|██▊ | 13/47 [00:03<00:09, 3.65it/s]
30%|██▉ | 14/47 [00:03<00:09, 3.65it/s]
32%|███▏ | 15/47 [00:04<00:08, 3.65it/s]
34%|███▍ | 16/47 [00:04<00:08, 3.65it/s]
36%|███▌ | 17/47 [00:04<00:08, 3.65it/s]
38%|███▊ | 18/47 [00:04<00:07, 3.65it/s]
40%|████ | 19/47 [00:05<00:07, 3.65it/s]
43%|████▎ | 20/47 [00:05<00:07, 3.65it/s]
45%|████▍ | 21/47 [00:05<00:07, 3.64it/s]
47%|████▋ | 22/47 [00:06<00:06, 3.64it/s]
49%|████▉ | 23/47 [00:06<00:06, 3.65it/s]
51%|█████ | 24/47 [00:06<00:06, 3.65it/s]
53%|█████▎ | 25/47 [00:06<00:06, 3.65it/s]
55%|█████▌ | 26/47 [00:07<00:05, 3.65it/s]
57%|█████▋ | 27/47 [00:07<00:05, 3.65it/s]
60%|█████▉ | 28/47 [00:07<00:05, 3.64it/s]
62%|██████▏ | 29/47 [00:07<00:04, 3.64it/s]
64%|██████▍ | 30/47 [00:08<00:04, 3.65it/s]
66%|██████▌ | 31/47 [00:08<00:04, 3.65it/s]
68%|██████▊ | 32/47 [00:08<00:04, 3.64it/s]
70%|███████ | 33/47 [00:09<00:03, 3.64it/s]
72%|███████▏ | 34/47 [00:09<00:03, 3.64it/s]
74%|███████▍ | 35/47 [00:09<00:03, 3.64it/s]
77%|███████▋ | 36/47 [00:09<00:03, 3.64it/s]
79%|███████▊ | 37/47 [00:10<00:02, 3.64it/s]
81%|████████ | 38/47 [00:10<00:02, 3.64it/s]
83%|████████▎ | 39/47 [00:10<00:02, 3.64it/s]
85%|████████▌ | 40/47 [00:10<00:01, 3.64it/s]
87%|████████▋ | 41/47 [00:11<00:01, 3.64it/s]
89%|████████▉ | 42/47 [00:11<00:01, 3.64it/s]
91%|█████████▏| 43/47 [00:11<00:01, 3.64it/s]
94%|█████████▎| 44/47 [00:12<00:00, 3.64it/s]
96%|█████████▌| 45/47 [00:12<00:00, 3.64it/s]
98%|█████████▊| 46/47 [00:12<00:00, 3.64it/s]
100%|██████████| 47/47 [00:12<00:00, 3.64it/s]
100%|██████████| 47/47 [00:12<00:00, 3.65it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.24it/s]
67%|██████▋ | 2/3 [00:00<00:00, 4.22it/s]
100%|██████████| 3/3 [00:00<00:00, 4.23it/s]
100%|██████████| 3/3 [00:00<00:00, 4.23it/s]
This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 14598
Ensuring enough disk space...
Free disk space: 1793721384960
Downloading weights: https://replicate.delivery/pbxt/Ps0dz8eckOQwMym14P7tuR66VU9lgCr5OMYUEzFeBatwq26RA/trained_model.tar
b'Downloaded 186 MB bytes in 0.290s (641 MB/s)\nExtracted 186 MB in 0.066s (2.8 GB/s)\n'
Downloaded weights in 0.5348246097564697 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a photo of a <s0><s1> dog dressed up with Christmas decoration
txt2img mode
0%| | 0/47 [00:00<?, ?it/s]
2%|▏ | 1/47 [00:00<00:12, 3.66it/s]
4%|▍ | 2/47 [00:00<00:12, 3.65it/s]
6%|▋ | 3/47 [00:00<00:12, 3.65it/s]
9%|▊ | 4/47 [00:01<00:11, 3.65it/s]
11%|█ | 5/47 [00:01<00:11, 3.65it/s]
13%|█▎ | 6/47 [00:01<00:11, 3.65it/s]
15%|█▍ | 7/47 [00:01<00:10, 3.65it/s]
17%|█▋ | 8/47 [00:02<00:10, 3.65it/s]
19%|█▉ | 9/47 [00:02<00:10, 3.66it/s]
21%|██▏ | 10/47 [00:02<00:10, 3.66it/s]
23%|██▎ | 11/47 [00:03<00:09, 3.66it/s]
26%|██▌ | 12/47 [00:03<00:09, 3.65it/s]
28%|██▊ | 13/47 [00:03<00:09, 3.65it/s]
30%|██▉ | 14/47 [00:03<00:09, 3.65it/s]
32%|███▏ | 15/47 [00:04<00:08, 3.65it/s]
34%|███▍ | 16/47 [00:04<00:08, 3.65it/s]
36%|███▌ | 17/47 [00:04<00:08, 3.65it/s]
38%|███▊ | 18/47 [00:04<00:07, 3.65it/s]
40%|████ | 19/47 [00:05<00:07, 3.65it/s]
43%|████▎ | 20/47 [00:05<00:07, 3.65it/s]
45%|████▍ | 21/47 [00:05<00:07, 3.64it/s]
47%|████▋ | 22/47 [00:06<00:06, 3.64it/s]
49%|████▉ | 23/47 [00:06<00:06, 3.65it/s]
51%|█████ | 24/47 [00:06<00:06, 3.65it/s]
53%|█████▎ | 25/47 [00:06<00:06, 3.65it/s]
55%|█████▌ | 26/47 [00:07<00:05, 3.65it/s]
57%|█████▋ | 27/47 [00:07<00:05, 3.65it/s]
60%|█████▉ | 28/47 [00:07<00:05, 3.64it/s]
62%|██████▏ | 29/47 [00:07<00:04, 3.64it/s]
64%|██████▍ | 30/47 [00:08<00:04, 3.65it/s]
66%|██████▌ | 31/47 [00:08<00:04, 3.65it/s]
68%|██████▊ | 32/47 [00:08<00:04, 3.64it/s]
70%|███████ | 33/47 [00:09<00:03, 3.64it/s]
72%|███████▏ | 34/47 [00:09<00:03, 3.64it/s]
74%|███████▍ | 35/47 [00:09<00:03, 3.64it/s]
77%|███████▋ | 36/47 [00:09<00:03, 3.64it/s]
79%|███████▊ | 37/47 [00:10<00:02, 3.64it/s]
81%|████████ | 38/47 [00:10<00:02, 3.64it/s]
83%|████████▎ | 39/47 [00:10<00:02, 3.64it/s]
85%|████████▌ | 40/47 [00:10<00:01, 3.64it/s]
87%|████████▋ | 41/47 [00:11<00:01, 3.64it/s]
89%|████████▉ | 42/47 [00:11<00:01, 3.64it/s]
91%|█████████▏| 43/47 [00:11<00:01, 3.64it/s]
94%|█████████▎| 44/47 [00:12<00:00, 3.64it/s]
96%|█████████▌| 45/47 [00:12<00:00, 3.64it/s]
98%|█████████▊| 46/47 [00:12<00:00, 3.64it/s]
100%|██████████| 47/47 [00:12<00:00, 3.64it/s]
100%|██████████| 47/47 [00:12<00:00, 3.65it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.24it/s]
67%|██████▋ | 2/3 [00:00<00:00, 4.22it/s]
100%|██████████| 3/3 [00:00<00:00, 4.23it/s]
100%|██████████| 3/3 [00:00<00:00, 4.23it/s]