zaktechgis
/
flux-pro-17
A fine-tuned FLUX.1 model
- Public
- 79 runs
-
H100
Prediction
zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3IDq44a94cc1hrm80ck15w9jt46k4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- classic portrait young man
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "classic portrait young man ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", { input: { model: "dev", prompt: "classic portrait young man ", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", input={ "model": "dev", "prompt": "classic portrait young man ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", "input": { "model": "dev", "prompt": "classic portrait young man ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-11-08T01:52:04.861601Z", "created_at": "2024-11-08T01:51:55.404000Z", "data_removed": false, "error": null, "id": "q44a94cc1hrm80ck15w9jt46k4", "input": { "model": "dev", "prompt": "classic portrait young man ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 52139\nPrompt: classic portrait young man\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.02s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.04it/s]\n 7%|▋ | 2/28 [00:00<00:07, 3.40it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.23it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.15it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.11it/s]\n 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.08it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.07it/s]\n 32%|███▏ | 9/28 [00:02<00:06, 3.06it/s]\n 36%|███▌ | 10/28 [00:03<00:05, 3.05it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.05it/s]\n 43%|████▎ | 12/28 [00:03<00:05, 3.05it/s]\n 46%|████▋ | 13/28 [00:04<00:04, 3.05it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.05it/s]\n 54%|█████▎ | 15/28 [00:04<00:04, 3.05it/s]\n 57%|█████▋ | 16/28 [00:05<00:03, 3.05it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.04it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.05it/s]\n 68%|██████▊ | 19/28 [00:06<00:02, 3.04it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.04it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.04it/s]\n 79%|███████▊ | 22/28 [00:07<00:01, 3.04it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 3.04it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.04it/s]\n 89%|████████▉ | 25/28 [00:08<00:00, 3.04it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 3.04it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.04it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.04it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.06it/s]", "metrics": { "predict_time": 9.451738416, "total_time": 9.457601 }, "output": [ "https://replicate.delivery/xezq/dQx0I5A40fyaJCWBg1FntTELPkciCTpj3n2sTbiWz7HiBZ3JA/out-0.webp" ], "started_at": "2024-11-08T01:51:55.409863Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-6pkdig56kw5j46sj6xls4mo7xb4fy6v7hhfkq7fpjyfpvazlqe2a", "get": "https://api.replicate.com/v1/predictions/q44a94cc1hrm80ck15w9jt46k4", "cancel": "https://api.replicate.com/v1/predictions/q44a94cc1hrm80ck15w9jt46k4/cancel" }, "version": "c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3" }
Generated inUsing seed: 52139 Prompt: classic portrait young man [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.02s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.04it/s] 7%|▋ | 2/28 [00:00<00:07, 3.40it/s] 11%|█ | 3/28 [00:00<00:07, 3.23it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.15it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.11it/s] 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.08it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.07it/s] 32%|███▏ | 9/28 [00:02<00:06, 3.06it/s] 36%|███▌ | 10/28 [00:03<00:05, 3.05it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.05it/s] 43%|████▎ | 12/28 [00:03<00:05, 3.05it/s] 46%|████▋ | 13/28 [00:04<00:04, 3.05it/s] 50%|█████ | 14/28 [00:04<00:04, 3.05it/s] 54%|█████▎ | 15/28 [00:04<00:04, 3.05it/s] 57%|█████▋ | 16/28 [00:05<00:03, 3.05it/s] 61%|██████ | 17/28 [00:05<00:03, 3.04it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.05it/s] 68%|██████▊ | 19/28 [00:06<00:02, 3.04it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.04it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.04it/s] 79%|███████▊ | 22/28 [00:07<00:01, 3.04it/s] 82%|████████▏ | 23/28 [00:07<00:01, 3.04it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.04it/s] 89%|████████▉ | 25/28 [00:08<00:00, 3.04it/s] 93%|█████████▎| 26/28 [00:08<00:00, 3.04it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.04it/s] 100%|██████████| 28/28 [00:09<00:00, 3.04it/s] 100%|██████████| 28/28 [00:09<00:00, 3.06it/s]
Prediction
zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3IDk3j6yt7h71rma0ck15waarapscStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- classic portrait young man scientist
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "classic portrait young man scientist", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", { input: { model: "dev", prompt: "classic portrait young man scientist", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", input={ "model": "dev", "prompt": "classic portrait young man scientist", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", "input": { "model": "dev", "prompt": "classic portrait young man scientist", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-11-08T01:52:30.763597Z", "created_at": "2024-11-08T01:52:21.304000Z", "data_removed": false, "error": null, "id": "k3j6yt7h71rma0ck15waarapsc", "input": { "model": "dev", "prompt": "classic portrait young man scientist", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 36803\nPrompt: classic portrait young man scientist\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.02s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.04it/s]\n 7%|▋ | 2/28 [00:00<00:07, 3.40it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.23it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.15it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.11it/s]\n 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.07it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.06it/s]\n 32%|███▏ | 9/28 [00:02<00:06, 3.06it/s]\n 36%|███▌ | 10/28 [00:03<00:05, 3.05it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.05it/s]\n 43%|████▎ | 12/28 [00:03<00:05, 3.05it/s]\n 46%|████▋ | 13/28 [00:04<00:04, 3.05it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.05it/s]\n 54%|█████▎ | 15/28 [00:04<00:04, 3.05it/s]\n 57%|█████▋ | 16/28 [00:05<00:03, 3.05it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.04it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.04it/s]\n 68%|██████▊ | 19/28 [00:06<00:02, 3.04it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.04it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.04it/s]\n 79%|███████▊ | 22/28 [00:07<00:01, 3.04it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 3.04it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.04it/s]\n 89%|████████▉ | 25/28 [00:08<00:00, 3.04it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 3.04it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.04it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.04it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.06it/s]", "metrics": { "predict_time": 9.454107084, "total_time": 9.459597 }, "output": [ "https://replicate.delivery/xezq/Qc5jB9HWOzqjMxNA9Yhc80wbXde3WTrd1NqNqf5nGZHeGkdnA/out-0.webp" ], "started_at": "2024-11-08T01:52:21.309490Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-ydmxz3ev7xx3b5gtt3wz3jbq5bwts6dvzp52gou3c4fw7jemsmsq", "get": "https://api.replicate.com/v1/predictions/k3j6yt7h71rma0ck15waarapsc", "cancel": "https://api.replicate.com/v1/predictions/k3j6yt7h71rma0ck15waarapsc/cancel" }, "version": "c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3" }
Generated inUsing seed: 36803 Prompt: classic portrait young man scientist [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.02s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.04it/s] 7%|▋ | 2/28 [00:00<00:07, 3.40it/s] 11%|█ | 3/28 [00:00<00:07, 3.23it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.15it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.11it/s] 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.07it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.06it/s] 32%|███▏ | 9/28 [00:02<00:06, 3.06it/s] 36%|███▌ | 10/28 [00:03<00:05, 3.05it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.05it/s] 43%|████▎ | 12/28 [00:03<00:05, 3.05it/s] 46%|████▋ | 13/28 [00:04<00:04, 3.05it/s] 50%|█████ | 14/28 [00:04<00:04, 3.05it/s] 54%|█████▎ | 15/28 [00:04<00:04, 3.05it/s] 57%|█████▋ | 16/28 [00:05<00:03, 3.05it/s] 61%|██████ | 17/28 [00:05<00:03, 3.04it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.04it/s] 68%|██████▊ | 19/28 [00:06<00:02, 3.04it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.04it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.04it/s] 79%|███████▊ | 22/28 [00:07<00:01, 3.04it/s] 82%|████████▏ | 23/28 [00:07<00:01, 3.04it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.04it/s] 89%|████████▉ | 25/28 [00:08<00:00, 3.04it/s] 93%|█████████▎| 26/28 [00:08<00:00, 3.04it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.04it/s] 100%|██████████| 28/28 [00:09<00:00, 3.04it/s] 100%|██████████| 28/28 [00:09<00:00, 3.06it/s]
Prediction
zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3ID27h29twbs9rm80ck15wsr7b41rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- classic portrait young man scientist
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "classic portrait young man scientist", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "png", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", { input: { model: "dev", prompt: "classic portrait young man scientist", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "png", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zaktechgis/flux-pro-17:c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", input={ "model": "dev", "prompt": "classic portrait young man scientist", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "png", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zaktechgis/flux-pro-17 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3", "input": { "model": "dev", "prompt": "classic portrait young man scientist", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "png", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-11-08T01:53:13.599891Z", "created_at": "2024-11-08T01:53:00.874000Z", "data_removed": false, "error": null, "id": "27h29twbs9rm80ck15wsr7b41r", "input": { "model": "dev", "prompt": "classic portrait young man scientist", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "png", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 43365\nPrompt: classic portrait young man scientist\n[!] txt2img mode\nUsing dev model\nfree=29668715929600\nDownloading weights\n2024-11-08T01:53:00Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmppnmux5t9/weights url=https://replicate.delivery/xezq/Akf5IEVXH4TfRE6SHf7yUk6zXBhzfIBRflecu7fysyfUzfjdnA/trained_model.tar\n2024-11-08T01:53:03Z | INFO | [ Complete ] dest=/tmp/tmppnmux5t9/weights size=\"172 MB\" total_elapsed=2.618s url=https://replicate.delivery/xezq/Akf5IEVXH4TfRE6SHf7yUk6zXBhzfIBRflecu7fysyfUzfjdnA/trained_model.tar\nDownloaded weights in 2.64s\nLoaded LoRAs in 3.10s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.07it/s]\n 7%|▋ | 2/28 [00:00<00:07, 3.43it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.25it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.18it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.14it/s]\n 21%|██▏ | 6/28 [00:01<00:07, 3.12it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.10it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.09it/s]\n 32%|███▏ | 9/28 [00:02<00:06, 3.09it/s]\n 36%|███▌ | 10/28 [00:03<00:05, 3.08it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.08it/s]\n 43%|████▎ | 12/28 [00:03<00:05, 3.08it/s]\n 46%|████▋ | 13/28 [00:04<00:04, 3.08it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.07it/s]\n 54%|█████▎ | 15/28 [00:04<00:04, 3.07it/s]\n 57%|█████▋ | 16/28 [00:05<00:03, 3.07it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.07it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.07it/s]\n 68%|██████▊ | 19/28 [00:06<00:02, 3.07it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.07it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.07it/s]\n 79%|███████▊ | 22/28 [00:07<00:01, 3.07it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 3.07it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.07it/s]\n 89%|████████▉ | 25/28 [00:08<00:00, 3.07it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 3.07it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.07it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.07it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.09it/s]", "metrics": { "predict_time": 12.681198446, "total_time": 12.725891 }, "output": [ "https://replicate.delivery/xezq/ioPYcr2zSM6WDdoqGfmLWFrC6Yp0RDohmhV04IfVhrcJEyuTA/out-0.png" ], "started_at": "2024-11-08T01:53:00.918693Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-bkiuxvxzxukudqgsfn3h5xqrsvd5qltzwp5pulw3f3ayiamg7lca", "get": "https://api.replicate.com/v1/predictions/27h29twbs9rm80ck15wsr7b41r", "cancel": "https://api.replicate.com/v1/predictions/27h29twbs9rm80ck15wsr7b41r/cancel" }, "version": "c3d61ca8d6043c9c07750df71a7603122c9cdd187d666cc12c4a50c84fd9f6b3" }
Generated inUsing seed: 43365 Prompt: classic portrait young man scientist [!] txt2img mode Using dev model free=29668715929600 Downloading weights 2024-11-08T01:53:00Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmppnmux5t9/weights url=https://replicate.delivery/xezq/Akf5IEVXH4TfRE6SHf7yUk6zXBhzfIBRflecu7fysyfUzfjdnA/trained_model.tar 2024-11-08T01:53:03Z | INFO | [ Complete ] dest=/tmp/tmppnmux5t9/weights size="172 MB" total_elapsed=2.618s url=https://replicate.delivery/xezq/Akf5IEVXH4TfRE6SHf7yUk6zXBhzfIBRflecu7fysyfUzfjdnA/trained_model.tar Downloaded weights in 2.64s Loaded LoRAs in 3.10s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.07it/s] 7%|▋ | 2/28 [00:00<00:07, 3.43it/s] 11%|█ | 3/28 [00:00<00:07, 3.25it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.18it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.14it/s] 21%|██▏ | 6/28 [00:01<00:07, 3.12it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.10it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.09it/s] 32%|███▏ | 9/28 [00:02<00:06, 3.09it/s] 36%|███▌ | 10/28 [00:03<00:05, 3.08it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.08it/s] 43%|████▎ | 12/28 [00:03<00:05, 3.08it/s] 46%|████▋ | 13/28 [00:04<00:04, 3.08it/s] 50%|█████ | 14/28 [00:04<00:04, 3.07it/s] 54%|█████▎ | 15/28 [00:04<00:04, 3.07it/s] 57%|█████▋ | 16/28 [00:05<00:03, 3.07it/s] 61%|██████ | 17/28 [00:05<00:03, 3.07it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.07it/s] 68%|██████▊ | 19/28 [00:06<00:02, 3.07it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.07it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.07it/s] 79%|███████▊ | 22/28 [00:07<00:01, 3.07it/s] 82%|████████▏ | 23/28 [00:07<00:01, 3.07it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.07it/s] 89%|████████▉ | 25/28 [00:08<00:00, 3.07it/s] 93%|█████████▎| 26/28 [00:08<00:00, 3.07it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.07it/s] 100%|██████████| 28/28 [00:09<00:00, 3.07it/s] 100%|██████████| 28/28 [00:09<00:00, 3.09it/s]
Want to make some of these yourself?
Run this model