zaktechgis
/
flux-pro-3
A fine-tuned FLUX.1 model
- Public
- 23 runs
-
H100
Prediction
zaktechgis/flux-pro-3:1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6eID1gga61gt59rm60cjxt49jhyk4mStatusSucceededSourceWebHardwareH100Total durationCreatedby @zaktechgisInput
- model
- dev
- prompt
- portrait for cmd01
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "portrait for cmd01", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zaktechgis/flux-pro-3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zaktechgis/flux-pro-3:1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6e", { input: { model: "dev", prompt: "portrait for cmd01", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zaktechgis/flux-pro-3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zaktechgis/flux-pro-3:1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6e", input={ "model": "dev", "prompt": "portrait for cmd01", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zaktechgis/flux-pro-3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6e", "input": { "model": "dev", "prompt": "portrait for cmd01", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-11-02T20:19:25.235919Z", "created_at": "2024-11-02T20:19:09.994000Z", "data_removed": false, "error": null, "id": "1gga61gt59rm60cjxt49jhyk4m", "input": { "model": "dev", "prompt": "portrait for cmd01", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 6986\nPrompt: portrait for cmd01\n[!] txt2img mode\nUsing dev model\nfree=6659477778432\nDownloading weights\n2024-11-02T20:19:11Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmplavsnbcp/weights url=https://replicate.delivery/yhqm/UDHV0mRlyia8Jdz7AfSZ9gACiQiofa0DevGMpA84eG6ZQO0OB/trained_model.tar\n2024-11-02T20:19:14Z | INFO | [ Complete ] dest=/tmp/tmplavsnbcp/weights size=\"172 MB\" total_elapsed=3.635s url=https://replicate.delivery/yhqm/UDHV0mRlyia8Jdz7AfSZ9gACiQiofa0DevGMpA84eG6ZQO0OB/trained_model.tar\nDownloaded weights in 3.67s\nLoaded LoRAs in 4.27s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 14.246909534, "total_time": 15.241919 }, "output": [ "https://replicate.delivery/yhqm/fRnBZ9dNinxeLkS10ZiflJHk7dKV03ReaomUtGp40j800O0OB/out-0.webp" ], "started_at": "2024-11-02T20:19:10.989009Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/wcdb-vku35amdyuf23omqf7gjb7ump5dom4bogws4pgdkfe5qvnqlytua", "get": "https://api.replicate.com/v1/predictions/1gga61gt59rm60cjxt49jhyk4m", "cancel": "https://api.replicate.com/v1/predictions/1gga61gt59rm60cjxt49jhyk4m/cancel" }, "version": "1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6e" }
Generated inUsing seed: 6986 Prompt: portrait for cmd01 [!] txt2img mode Using dev model free=6659477778432 Downloading weights 2024-11-02T20:19:11Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmplavsnbcp/weights url=https://replicate.delivery/yhqm/UDHV0mRlyia8Jdz7AfSZ9gACiQiofa0DevGMpA84eG6ZQO0OB/trained_model.tar 2024-11-02T20:19:14Z | INFO | [ Complete ] dest=/tmp/tmplavsnbcp/weights size="172 MB" total_elapsed=3.635s url=https://replicate.delivery/yhqm/UDHV0mRlyia8Jdz7AfSZ9gACiQiofa0DevGMpA84eG6ZQO0OB/trained_model.tar Downloaded weights in 3.67s Loaded LoRAs in 4.27s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.88it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Prediction
zaktechgis/flux-pro-3:1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6eID63fvwez5j1rm40cjxt7rmx00ywStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- portrait for cmd01 with background in office
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "portrait for cmd01 with background in office", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zaktechgis/flux-pro-3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zaktechgis/flux-pro-3:1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6e", { input: { model: "dev", prompt: "portrait for cmd01 with background in office", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zaktechgis/flux-pro-3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zaktechgis/flux-pro-3:1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6e", input={ "model": "dev", "prompt": "portrait for cmd01 with background in office", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zaktechgis/flux-pro-3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6e", "input": { "model": "dev", "prompt": "portrait for cmd01 with background in office", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-11-02T20:27:56.821176Z", "created_at": "2024-11-02T20:27:40.816000Z", "data_removed": false, "error": null, "id": "63fvwez5j1rm40cjxt7rmx00yw", "input": { "model": "dev", "prompt": "portrait for cmd01 with background in office", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 58325\nPrompt: portrait for cmd01 with background in office\n[!] txt2img mode\nUsing dev model\nfree=8263962701824\nDownloading weights\n2024-11-02T20:27:41Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0nm1nwru/weights url=https://replicate.delivery/yhqm/UDHV0mRlyia8Jdz7AfSZ9gACiQiofa0DevGMpA84eG6ZQO0OB/trained_model.tar\n2024-11-02T20:27:45Z | INFO | [ Complete ] dest=/tmp/tmp0nm1nwru/weights size=\"172 MB\" total_elapsed=3.240s url=https://replicate.delivery/yhqm/UDHV0mRlyia8Jdz7AfSZ9gACiQiofa0DevGMpA84eG6ZQO0OB/trained_model.tar\nDownloaded weights in 3.27s\nLoaded LoRAs in 3.92s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:20, 1.31it/s]\n 7%|▋ | 2/28 [00:01<00:12, 2.05it/s]\n 11%|█ | 3/28 [00:01<00:10, 2.36it/s]\n 14%|█▍ | 4/28 [00:01<00:09, 2.54it/s]\n 18%|█▊ | 5/28 [00:02<00:08, 2.65it/s]\n 21%|██▏ | 6/28 [00:02<00:08, 2.72it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.77it/s]\n 29%|██▊ | 8/28 [00:03<00:07, 2.80it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.83it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.84it/s]\n 39%|███▉ | 11/28 [00:04<00:05, 2.85it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.86it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.86it/s]\n 50%|█████ | 14/28 [00:05<00:04, 2.87it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s]\n 61%|██████ | 17/28 [00:06<00:03, 2.87it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s]\n 71%|███████▏ | 20/28 [00:07<00:02, 2.87it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:08<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:08<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:09<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:09<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:10<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:10<00:00, 2.77it/s]", "metrics": { "predict_time": 14.956075969, "total_time": 16.005176 }, "output": [ "https://replicate.delivery/yhqm/YDeYNkUHykQeUEe4y6v5JJiYEcou0VxgeffoMw5oybkET9Q7E/out-0.webp" ], "started_at": "2024-11-02T20:27:41.865100Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/wcdb-376tsakvq2w7z727qrb64mcbj4sg4x6dzbmjxluy6n2blbidpc6q", "get": "https://api.replicate.com/v1/predictions/63fvwez5j1rm40cjxt7rmx00yw", "cancel": "https://api.replicate.com/v1/predictions/63fvwez5j1rm40cjxt7rmx00yw/cancel" }, "version": "1d374e8a336e867a700ebf1b7af2000fdaa97b9247708b3e6b0cde29d3869f6e" }
Generated inUsing seed: 58325 Prompt: portrait for cmd01 with background in office [!] txt2img mode Using dev model free=8263962701824 Downloading weights 2024-11-02T20:27:41Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0nm1nwru/weights url=https://replicate.delivery/yhqm/UDHV0mRlyia8Jdz7AfSZ9gACiQiofa0DevGMpA84eG6ZQO0OB/trained_model.tar 2024-11-02T20:27:45Z | INFO | [ Complete ] dest=/tmp/tmp0nm1nwru/weights size="172 MB" total_elapsed=3.240s url=https://replicate.delivery/yhqm/UDHV0mRlyia8Jdz7AfSZ9gACiQiofa0DevGMpA84eG6ZQO0OB/trained_model.tar Downloaded weights in 3.27s Loaded LoRAs in 3.92s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:20, 1.31it/s] 7%|▋ | 2/28 [00:01<00:12, 2.05it/s] 11%|█ | 3/28 [00:01<00:10, 2.36it/s] 14%|█▍ | 4/28 [00:01<00:09, 2.54it/s] 18%|█▊ | 5/28 [00:02<00:08, 2.65it/s] 21%|██▏ | 6/28 [00:02<00:08, 2.72it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.77it/s] 29%|██▊ | 8/28 [00:03<00:07, 2.80it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.83it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.84it/s] 39%|███▉ | 11/28 [00:04<00:05, 2.85it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.86it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.86it/s] 50%|█████ | 14/28 [00:05<00:04, 2.87it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.87it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.87it/s] 61%|██████ | 17/28 [00:06<00:03, 2.87it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.87it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.87it/s] 71%|███████▏ | 20/28 [00:07<00:02, 2.87it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:08<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:08<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:09<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:09<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:10<00:00, 2.88it/s] 100%|██████████| 28/28 [00:10<00:00, 2.77it/s]
Want to make some of these yourself?
Run this model