You're looking at a specific version of this model. Jump to the model overview.

zedge /sdxl-old:53b0b9e4

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
a digital conceptual art illustration, cyberpunk anime digital art, cyberpunk illustration, cyberpunk art station aesthetics, cyberpunk art style, detailed cyberpunk illustration, Digital Conceptual Art Illustration, detailed illustration of game art, detailed digital conceptual art, cinematic lighting
User defined prompt
negative_prompt
string
lowres, low resolution, bad quality, jpg artifacts, ugly, deformed, noisy, blurry, noise, low detail, nsfw, topless, see-through, revealing clothing, wrong gender, wrong ethnicity, wrong hair, wrong age, mask, face mask, helmet, face not visible
Input Negative Prompt
width
integer
768
Width of output image
height
integer
768
Height of output image
megapixel_count
number
0.85

Min: 0.5

Max: 3

megapixel count for image resizing. 1000x1000 resolution is equal to 1 megapixel
num_outputs
integer
4

Min: 1

Max: 4

Number of images to output
num_inference_steps
integer
10

Min: 1

Max: 500

Number of denoising steps
strength
number
1

Max: 1

How much to transform the reference image (applies to image_to_image model only)
guidance_scale
number
15

Min: 1

Max: 20

Scale for classifier-free guidance
scheduler
None
K_EULER
Choose a scheduler
seed
integer
-1
Seed value. Leave empty to randomize
model_name
None
SDXL_REALVISXL_V4_TEXT_TO_IMAGE
Choose a model
use_clip_interrogator
boolean
False
Use CLIP interrogator to describe image in img2img flow
verbose
boolean
False
Print detailed timing information
return_timing
boolean
False
Return timing information in the output
use_compel
boolean
True
Use Compel for prompt processing
warm_delay
integer
-1
Parameter for warming the model. If set, returns empty dict after specified seconds

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'additionalProperties': True, 'title': 'Output', 'type': 'object'}