zf-kbot/object-remover-20251030
Public
318.5K
runs
Run zf-kbot/object-remover-20251030 with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
| Field | Type | Default value | Description |
|---|---|---|---|
| input_image |
string
|
Primary input image for processing
|
|
| mask_image |
string
|
Mask image (alpha channel) for selective processing
|
|
| prompt |
string
|
remove
|
Text prompt to guide generation (e.g., 'remove' for object removal, or describe what to fill)
|
| negative_prompt |
string
|
nsfw
|
Negative prompt to avoid unwanted content
|
| top_reserve |
integer
|
200
|
Top margin reserve in pixels
|
| bottom_reserve |
integer
|
200
|
Bottom margin reserve in pixels
|
| left_reserve |
integer
|
100
|
Left margin reserve in pixels
|
| right_reserve |
integer
|
100
|
Right margin reserve in pixels
|
| num_inference_steps |
integer
|
10
Min: 1 |
Number of inference steps
|
| guidance_scale |
number
|
1
|
Guidance scale for generation
|
| true_cfg |
number
|
4
|
True CFG parameter for quality control
|
| seed |
integer
|
-1
|
Random seed (-1 for random)
|
| output_ext |
None
|
.jpg
|
Output format
|
| quality |
integer
|
90
Min: 1 Max: 100 |
Output quality (1-100)
|
{
"type": "object",
"title": "Input",
"required": [
"input_image",
"mask_image"
],
"properties": {
"seed": {
"type": "integer",
"title": "Seed",
"default": -1,
"x-order": 11,
"description": "Random seed (-1 for random)"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "remove",
"x-order": 2,
"description": "Text prompt to guide generation (e.g., 'remove' for object removal, or describe what to fill)"
},
"quality": {
"type": "integer",
"title": "Quality",
"default": 90,
"maximum": 100,
"minimum": 1,
"x-order": 13,
"description": "Output quality (1-100)"
},
"true_cfg": {
"type": "number",
"title": "True Cfg",
"default": 4,
"minimum": 0,
"x-order": 10,
"description": "True CFG parameter for quality control"
},
"mask_image": {
"type": "string",
"title": "Mask Image",
"format": "uri",
"x-order": 1,
"description": "Mask image (alpha channel) for selective processing"
},
"output_ext": {
"enum": [
".jpg",
".png",
".webp"
],
"type": "string",
"title": "output_ext",
"description": "Output format",
"default": ".jpg",
"x-order": 12
},
"input_image": {
"type": "string",
"title": "Input Image",
"format": "uri",
"x-order": 0,
"description": "Primary input image for processing"
},
"top_reserve": {
"type": "integer",
"title": "Top Reserve",
"default": 200,
"minimum": 0,
"x-order": 4,
"description": "Top margin reserve in pixels"
},
"left_reserve": {
"type": "integer",
"title": "Left Reserve",
"default": 100,
"minimum": 0,
"x-order": 6,
"description": "Left margin reserve in pixels"
},
"right_reserve": {
"type": "integer",
"title": "Right Reserve",
"default": 100,
"minimum": 0,
"x-order": 7,
"description": "Right margin reserve in pixels"
},
"bottom_reserve": {
"type": "integer",
"title": "Bottom Reserve",
"default": 200,
"minimum": 0,
"x-order": 5,
"description": "Bottom margin reserve in pixels"
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 1,
"minimum": 0,
"x-order": 9,
"description": "Guidance scale for generation"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"default": "nsfw",
"x-order": 3,
"description": "Negative prompt to avoid unwanted content"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 10,
"minimum": 1,
"x-order": 8,
"description": "Number of inference steps"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}