zhouzhengjun/lora_train

Public
5 runs

Input

You can run this model locally using Cog. First, install Cog:
brew install cog

If you don’t have Homebrew, there are other installation options available.

Run this to download the model and run it in your local environment:

cog predict r8.im/zhouzhengjun/lora_train@sha256:490c2d30a2996a69f617ea9a8e5fd17d31bbc032291b2097c324ac1670abb851 \
  -i 'seed=1337' \
  -i 'scale_lr=true' \
  -i 'lora_rank=4' \
  -i 'lora_scale=1' \
  -i 'resolution=512' \
  -i 'color_jitter=true' \
  -i 'lr_scheduler="constant"' \
  -i 'use_template="object"' \
  -i 'clip_ti_decay=true' \
  -i 'lora_dropout_p=0.1' \
  -i 'lr_warmup_steps=0' \
  -i 'weight_decay_ti=0' \
  -i 'learning_rate_ti=0.0005' \
  -i 'train_batch_size=1' \
  -i 'lr_scheduler_lora="constant"' \
  -i 'weight_decay_lora=0.001' \
  -i 'continue_inversion=false' \
  -i 'learning_rate_text=0.00001' \
  -i 'learning_rate_unet=0.0001' \
  -i 'max_train_steps_ti=500' \
  -i 'placeholder_tokens="<s1>|<s2>"' \
  -i 'train_text_encoder=true' \
  -i 'lr_warmup_steps_lora=0' \
  -i 'continue_inversion_lr=0.0001' \
  -i 'gradient_checkpointing=false' \
  -i 'max_train_steps_tuning=1000' \
  -i 'gradient_accumulation_steps=4' \
  -i 'use_face_segmentation_condition=false'

To learn more, take a look at the Cog documentation.

Output

No output yet! Press "Submit" to start a prediction.

Run time and cost

This model runs on Nvidia T4 GPU hardware. We don't yet have enough runs of this model to provide performance information.

Readme

This model doesn't have a readme.