zhouzhengjun / lora_train

  • Public
  • 5 runs
  • T4

Input

pip install replicate
Set the REPLICATE_API_TOKEN environment variable:
export REPLICATE_API_TOKEN=<paste-your-token-here>

Find your API token in your account settings.

Import the client:
import replicate

Run zhouzhengjun/lora_train using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.

output = replicate.run(
    "zhouzhengjun/lora_train:490c2d30a2996a69f617ea9a8e5fd17d31bbc032291b2097c324ac1670abb851",
    input={
        "seed": 1337,
        "scale_lr": True,
        "lora_rank": 4,
        "lora_scale": 1,
        "resolution": 512,
        "color_jitter": True,
        "lr_scheduler": "constant",
        "use_template": "object",
        "clip_ti_decay": True,
        "lora_dropout_p": 0.1,
        "lr_warmup_steps": 0,
        "weight_decay_ti": 0,
        "learning_rate_ti": 0.0005,
        "train_batch_size": 1,
        "lr_scheduler_lora": "constant",
        "weight_decay_lora": 0.001,
        "continue_inversion": False,
        "learning_rate_text": 0.00001,
        "learning_rate_unet": 0.0001,
        "max_train_steps_ti": 500,
        "placeholder_tokens": "<s1>|<s2>",
        "train_text_encoder": True,
        "lr_warmup_steps_lora": 0,
        "continue_inversion_lr": 0.0001,
        "gradient_checkpointing": False,
        "max_train_steps_tuning": 1000,
        "gradient_accumulation_steps": 4,
        "use_face_segmentation_condition": False
    }
)
print(output)

To learn more, take a look at the guide on getting started with Python.

Output

No output yet! Press "Submit" to start a prediction.

Run time and cost

This model runs on Nvidia T4 GPU hardware. We don't yet have enough runs of this model to provide performance information.

Readme

This model doesn't have a readme.