You're looking at a specific version of this model. Jump to the model overview.

zust-ai /zust-diffusion:8eea01f7

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
is_heartbeat
boolean
False
Check if Server Alive
pipe_type
string
sdxl
sdxl or cleanup
with_detail
boolean
False
Detailed Output
seed
integer
Seed
subjects
string
[{"top": 0.3583984375, "left": 0.546875, "scale": 0.0009765625, "image_url": "https://raw.githubusercontent.com/zust-ai/product-ai-training/main/test/test_subject.png"}]
Subject Placement & URLs
width
integer
1024
Width (1024, 1216, 832)
height
integer
1024
Height (1024, 832, 1216)
prompt
string
trolley suitcase on a mountain rock with hot air balloons in the bkue sky
Prompt
negative_prompt
string
floating objects, levitate, ugly, blur, text, signature, watermark, bad quality, lowres, worst quality, drawing
Negative Prompt
num_images_per_prompt
integer
2

Min: 1

Number of Generations (Firstpass)
firstpass_inference_steps
integer
20

Min: 1

Firstpass Iterations
firstpass_prompt_strength
number
5

Min: 1

Firstpass Prompt Strength
firstpass_subject_control_strength
number
0.5

Max: 2

Subject ControlNet Guidance (Firstpass)
firstpass_fix_dilate
integer
11
Dilation Scale (Firstpass.fix)
firstpass_dilate_iterations
integer
5
Iterations for Dilation (Firstpass.fix)
refiner_strength
number
0.3
Refiner Noise Strength
refiner_inference_steps
integer
30

Min: 1

Refiner Iterations
refiner_prompt_strength
number
5

Min: 1

Refiner Prompt Strength
cleanup_image
string
lorem ipsum
URL for Cleanup Image
cleanup_mask
string
lorem ipsum
URL for (Binary) Mask Image
cleanup_dilate
integer
5
Cleanup Dilation Scale
cleanup_denoise_strength
number
0.8
Noise Strength for Masked Area
cleanup_guidance_scale
number
7
Cleanup Prompt Strength
cleanup_inference_steps
integer
25
Cleanup Iterations Step

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'items': {'format': 'uri', 'type': 'string'},
 'title': 'Output',
 'type': 'array'}