anotherjesse / bfirshbooth-ad
(Updated 2 years, 5 months ago)
- Public
- 135 runs
Prediction
anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01IDlouy6oezfrdq7dihi4pcuyg5kqStatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- 3730721345
- width
- "768"
- height
- "1024"
- prompt
- analog style closeup portrait of cowboy bfirsh
- scheduler
- K_EULER
- num_outputs
- 1
- guidance_scale
- 7.5
- negative_prompt
- blue haze
- prompt_strength
- 0.8
- num_inference_steps
- "20"
{ "seed": 3730721345, "width": "768", "height": "1024", "prompt": "analog style closeup portrait of cowboy bfirsh", "scheduler": "K_EULER", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze", "prompt_strength": 0.8, "num_inference_steps": "20" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", { input: { seed: 3730721345, width: "768", height: "1024", prompt: "analog style closeup portrait of cowboy bfirsh", scheduler: "K_EULER", num_outputs: 1, guidance_scale: 7.5, negative_prompt: "blue haze", prompt_strength: 0.8, num_inference_steps: "20" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", input={ "seed": 3730721345, "width": "768", "height": "1024", "prompt": "analog style closeup portrait of cowboy bfirsh", "scheduler": "K_EULER", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze", "prompt_strength": 0.8, "num_inference_steps": "20" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", "input": { "seed": 3730721345, "width": "768", "height": "1024", "prompt": "analog style closeup portrait of cowboy bfirsh", "scheduler": "K_EULER", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze", "prompt_strength": 0.8, "num_inference_steps": "20" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-12-22T01:53:08.980880Z", "created_at": "2022-12-22T01:52:48.062615Z", "data_removed": false, "error": null, "id": "louy6oezfrdq7dihi4pcuyg5kq", "input": { "seed": 3730721345, "width": "768", "height": "1024", "prompt": "analog style closeup portrait of cowboy bfirsh", "scheduler": "K_EULER", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze", "prompt_strength": 0.8, "num_inference_steps": "20" }, "logs": "Using seed: 3730721345\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.03it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.05it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.05it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.05it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.05it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.05it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.05it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.06it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.06it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.06it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.05it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.05it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.06it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.06it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.06it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.05it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.05it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.05it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.05it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.05it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.05it/s]", "metrics": { "predict_time": 20.882233, "total_time": 20.918265 }, "output": [ "https://replicate.delivery/pbxt/UO9RkYQizBLXK9VdS7fZk479u1n4ysW2Y7SAVL6ueQwEqWMQA/out-0.png" ], "started_at": "2022-12-22T01:52:48.098647Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/louy6oezfrdq7dihi4pcuyg5kq", "cancel": "https://api.replicate.com/v1/predictions/louy6oezfrdq7dihi4pcuyg5kq/cancel" }, "version": "37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01" }
Generated inUsing seed: 3730721345 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.03it/s] 10%|█ | 2/20 [00:01<00:17, 1.05it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.05it/s] 20%|██ | 4/20 [00:03<00:15, 1.05it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.05it/s] 30%|███ | 6/20 [00:05<00:13, 1.05it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.05it/s] 40%|████ | 8/20 [00:07<00:11, 1.06it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.06it/s] 50%|█████ | 10/20 [00:09<00:09, 1.06it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.05it/s] 60%|██████ | 12/20 [00:11<00:07, 1.05it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.06it/s] 70%|███████ | 14/20 [00:13<00:05, 1.06it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.06it/s] 80%|████████ | 16/20 [00:15<00:03, 1.05it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.05it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.05it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.05it/s] 100%|██████████| 20/20 [00:18<00:00, 1.05it/s] 100%|██████████| 20/20 [00:18<00:00, 1.05it/s]
Prediction
anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01IDkbruiyd5jbdlxmm4tdgfn24xdaStatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- 1624745865
- width
- "768"
- height
- "1024"
- prompt
- analog style portrait of cosmonaut bfirsh
- scheduler
- DPMSolverMultistep
- num_outputs
- 1
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- "20"
{ "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style portrait of cosmonaut bfirsh", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": "20" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", { input: { seed: 1624745865, width: "768", height: "1024", prompt: "analog style portrait of cosmonaut bfirsh", scheduler: "DPMSolverMultistep", num_outputs: 1, guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: "20" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", input={ "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style portrait of cosmonaut bfirsh", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": "20" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", "input": { "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style portrait of cosmonaut bfirsh", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": "20" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-12-22T01:55:03.612342Z", "created_at": "2022-12-22T01:54:42.260867Z", "data_removed": false, "error": null, "id": "kbruiyd5jbdlxmm4tdgfn24xda", "input": { "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style portrait of cosmonaut bfirsh", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": "20" }, "logs": "Using seed: 1624745865\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.01it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.05it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.05it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.05it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.05it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.05it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.05it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.05it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.03it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.03it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.03it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 21.315915, "total_time": 21.351475 }, "output": [ "https://replicate.delivery/pbxt/3CUknNPxkr4fVqOCFaC4YIN4fTT9Tk7f2zycD81rLYYsXtYgA/out-0.png" ], "started_at": "2022-12-22T01:54:42.296427Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kbruiyd5jbdlxmm4tdgfn24xda", "cancel": "https://api.replicate.com/v1/predictions/kbruiyd5jbdlxmm4tdgfn24xda/cancel" }, "version": "37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01" }
Generated inUsing seed: 1624745865 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.01it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.05it/s] 20%|██ | 4/20 [00:03<00:15, 1.05it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.05it/s] 30%|███ | 6/20 [00:05<00:13, 1.05it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.05it/s] 40%|████ | 8/20 [00:07<00:11, 1.05it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.05it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.03it/s] 80%|████████ | 16/20 [00:15<00:03, 1.03it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.03it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01IDbwot33mb4zftjmaf3yirgx5tsaStatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- 1624745865
- width
- "768"
- height
- "1024"
- prompt
- analog style closeup portrait of bfirsh, background futuristic neon at night storefront
- scheduler
- DPMSolverMultistep
- num_outputs
- 1
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- "20"
{ "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style closeup portrait of bfirsh, background futuristic neon at night storefront", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": "20" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", { input: { seed: 1624745865, width: "768", height: "1024", prompt: "analog style closeup portrait of bfirsh, background futuristic neon at night storefront", scheduler: "DPMSolverMultistep", num_outputs: 1, guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: "20" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", input={ "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style closeup portrait of bfirsh, background futuristic neon at night storefront", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": "20" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", "input": { "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style closeup portrait of bfirsh, background futuristic neon at night storefront", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": "20" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-12-22T01:57:16.589150Z", "created_at": "2022-12-22T01:56:55.480911Z", "data_removed": false, "error": null, "id": "bwot33mb4zftjmaf3yirgx5tsa", "input": { "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style closeup portrait of bfirsh, background futuristic neon at night storefront", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": "20" }, "logs": "Using seed: 1624745865\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.02it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.05it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.06it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.06it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.06it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.06it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.06it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.05it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.05it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.05it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.05it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.05it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.05it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.05it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.04it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.05it/s]", "metrics": { "predict_time": 21.07372, "total_time": 21.108239 }, "output": [ "https://replicate.delivery/pbxt/VUOe88L7Soxf7keelEpjxbfejZ6R3ov9ZgnaCHfblpi09WLGIA/out-0.png" ], "started_at": "2022-12-22T01:56:55.515430Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bwot33mb4zftjmaf3yirgx5tsa", "cancel": "https://api.replicate.com/v1/predictions/bwot33mb4zftjmaf3yirgx5tsa/cancel" }, "version": "37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01" }
Generated inUsing seed: 1624745865 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.02it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.05it/s] 20%|██ | 4/20 [00:03<00:15, 1.06it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.06it/s] 30%|███ | 6/20 [00:05<00:13, 1.06it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.06it/s] 40%|████ | 8/20 [00:07<00:11, 1.06it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.05it/s] 50%|█████ | 10/20 [00:09<00:09, 1.05it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.05it/s] 60%|██████ | 12/20 [00:11<00:07, 1.05it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.05it/s] 70%|███████ | 14/20 [00:13<00:05, 1.05it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.05it/s] 80%|████████ | 16/20 [00:15<00:03, 1.04it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.05it/s]
Prediction
anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01IDgozxv7fmizd2fp7mhale2lazbuStatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- 1624745865
- width
- "768"
- height
- "1024"
- prompt
- analog style portrait of young bfirsh 1950s hollywood glamour
- scheduler
- DPMSolverMultistep
- num_outputs
- 1
- guidance_scale
- 7.5
- negative_prompt
- blue haze
- prompt_strength
- 0.8
- num_inference_steps
- "20"
{ "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style portrait of young bfirsh 1950s hollywood glamour", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze", "prompt_strength": 0.8, "num_inference_steps": "20" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", { input: { seed: 1624745865, width: "768", height: "1024", prompt: "analog style portrait of young bfirsh 1950s hollywood glamour", scheduler: "DPMSolverMultistep", num_outputs: 1, guidance_scale: 7.5, negative_prompt: "blue haze", prompt_strength: 0.8, num_inference_steps: "20" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", input={ "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style portrait of young bfirsh 1950s hollywood glamour", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze", "prompt_strength": 0.8, "num_inference_steps": "20" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", "input": { "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style portrait of young bfirsh 1950s hollywood glamour", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze", "prompt_strength": 0.8, "num_inference_steps": "20" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-12-22T01:57:54.960004Z", "created_at": "2022-12-22T01:57:33.867043Z", "data_removed": false, "error": null, "id": "gozxv7fmizd2fp7mhale2lazbu", "input": { "seed": 1624745865, "width": "768", "height": "1024", "prompt": "analog style portrait of young bfirsh 1950s hollywood glamour", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze", "prompt_strength": 0.8, "num_inference_steps": "20" }, "logs": "Using seed: 1624745865\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.05it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.06it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.06it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.06it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.06it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.06it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.06it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.06it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.06it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.06it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.06it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.05it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.05it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.05it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.05it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.05it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.05it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.05it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.05it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.05it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.05it/s]", "metrics": { "predict_time": 21.054471, "total_time": 21.092961 }, "output": [ "https://replicate.delivery/pbxt/fhgpYv8XPZT3e0Q0lZ7O3XhcG11qjeieMSVhpH7u2ypL6axAB/out-0.png" ], "started_at": "2022-12-22T01:57:33.905533Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gozxv7fmizd2fp7mhale2lazbu", "cancel": "https://api.replicate.com/v1/predictions/gozxv7fmizd2fp7mhale2lazbu/cancel" }, "version": "37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01" }
Generated inUsing seed: 1624745865 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.05it/s] 10%|█ | 2/20 [00:01<00:17, 1.06it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.06it/s] 20%|██ | 4/20 [00:03<00:15, 1.06it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.06it/s] 30%|███ | 6/20 [00:05<00:13, 1.06it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.06it/s] 40%|████ | 8/20 [00:07<00:11, 1.06it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.06it/s] 50%|█████ | 10/20 [00:09<00:09, 1.06it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.06it/s] 60%|██████ | 12/20 [00:11<00:07, 1.05it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.05it/s] 70%|███████ | 14/20 [00:13<00:05, 1.05it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.05it/s] 80%|████████ | 16/20 [00:15<00:03, 1.05it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.05it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.05it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.05it/s] 100%|██████████| 20/20 [00:18<00:00, 1.05it/s] 100%|██████████| 20/20 [00:18<00:00, 1.05it/s]
Prediction
anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01IDu5gbl4e4dnbc5czvvu4rjdrloaStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- "768"
- height
- "1024"
- prompt
- analog style film still of bfirsh at a neon convenience storefront
- scheduler
- DPMSolverMultistep
- num_outputs
- 1
- guidance_scale
- 7.5
- negative_prompt
- blue haze hdr
- prompt_strength
- 0.8
- num_inference_steps
- "20"
{ "width": "768", "height": "1024", "prompt": "analog style film still of bfirsh at a neon convenience storefront", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze hdr", "prompt_strength": 0.8, "num_inference_steps": "20" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", { input: { width: "768", height: "1024", prompt: "analog style film still of bfirsh at a neon convenience storefront", scheduler: "DPMSolverMultistep", num_outputs: 1, guidance_scale: 7.5, negative_prompt: "blue haze hdr", prompt_strength: 0.8, num_inference_steps: "20" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", input={ "width": "768", "height": "1024", "prompt": "analog style film still of bfirsh at a neon convenience storefront", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze hdr", "prompt_strength": 0.8, "num_inference_steps": "20" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run anotherjesse/bfirshbooth-ad using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "anotherjesse/bfirshbooth-ad:37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01", "input": { "width": "768", "height": "1024", "prompt": "analog style film still of bfirsh at a neon convenience storefront", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze hdr", "prompt_strength": 0.8, "num_inference_steps": "20" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-12-22T01:59:06.010414Z", "created_at": "2022-12-22T01:58:44.737933Z", "data_removed": false, "error": null, "id": "u5gbl4e4dnbc5czvvu4rjdrloa", "input": { "width": "768", "height": "1024", "prompt": "analog style film still of bfirsh at a neon convenience storefront", "scheduler": "DPMSolverMultistep", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "blue haze hdr", "prompt_strength": 0.8, "num_inference_steps": "20" }, "logs": "Using seed: 8524\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.03it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.03it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.04it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 21.235174, "total_time": 21.272481 }, "output": [ "https://replicate.delivery/pbxt/OV4QKO17ka4QIBbRPF5U8MuSYejm1yTTUjolcTLx3kj0XLGIA/out-0.png" ], "started_at": "2022-12-22T01:58:44.775240Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/u5gbl4e4dnbc5czvvu4rjdrloa", "cancel": "https://api.replicate.com/v1/predictions/u5gbl4e4dnbc5czvvu4rjdrloa/cancel" }, "version": "37df7a99a4f34ad0e432f66bd7d0635078e141ea39aa3e9e20414ac69e42eb01" }
Generated inUsing seed: 8524 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.03it/s] 10%|█ | 2/20 [00:01<00:17, 1.03it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s] 80%|████████ | 16/20 [00:15<00:03, 1.04it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Want to make some of these yourself?
Run this model