aramintak
/
linnea-flux-beta
An original character LoRA
- Public
- 413 runs
-
H100
Prediction
aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08ID7h4rw9eve5rm20chj44rasrhmgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- linnea teal hair smiling, soft illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "linnea teal hair smiling, soft illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", { input: { model: "dev", prompt: "linnea teal hair smiling, soft illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", input={ "model": "dev", "prompt": "linnea teal hair smiling, soft illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", "input": { "model": "dev", "prompt": "linnea teal hair smiling, soft illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-26T23:34:08.653905Z", "created_at": "2024-08-26T23:33:48.017000Z", "data_removed": false, "error": null, "id": "7h4rw9eve5rm20chj44rasrhmg", "input": { "model": "dev", "prompt": "linnea teal hair smiling, soft illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 62291\nPrompt: linnea teal hair smiling, soft illustration style\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 11.91s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.66it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.21it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.94it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.68it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.67it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.67it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.67it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.67it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.67it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.67it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.70it/s]", "metrics": { "predict_time": 20.022104207, "total_time": 20.636905 }, "output": [ "https://replicate.delivery/yhqm/1QABLTqK9O6jFJ3p386qgVsmSHm6qAqbrRr9wxeyOxO4FWrJA/out-0.webp" ], "started_at": "2024-08-26T23:33:48.631801Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7h4rw9eve5rm20chj44rasrhmg", "cancel": "https://api.replicate.com/v1/predictions/7h4rw9eve5rm20chj44rasrhmg/cancel" }, "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08" }
Generated inUsing seed: 62291 Prompt: linnea teal hair smiling, soft illustration style txt2img mode Using dev model Loaded LoRAs in 11.91s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.66it/s] 7%|▋ | 2/28 [00:00<00:06, 4.21it/s] 11%|█ | 3/28 [00:00<00:06, 3.94it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.68it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.67it/s] 50%|█████ | 14/28 [00:03<00:03, 3.67it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s] 61%|██████ | 17/28 [00:04<00:02, 3.67it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.67it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.67it/s] 100%|██████████| 28/28 [00:07<00:00, 3.67it/s] 100%|██████████| 28/28 [00:07<00:00, 3.70it/s]
Prediction
aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08ID8km4yms4rhrm40chj45tpffr3wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- linnea teal hair animation expression sheet showing a variety of emotions
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "linnea teal hair animation expression sheet showing a variety of emotions", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", { input: { model: "dev", prompt: "linnea teal hair animation expression sheet showing a variety of emotions", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", input={ "model": "dev", "prompt": "linnea teal hair animation expression sheet showing a variety of emotions", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", "input": { "model": "dev", "prompt": "linnea teal hair animation expression sheet showing a variety of emotions", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-26T23:35:32.834831Z", "created_at": "2024-08-26T23:35:12.324000Z", "data_removed": false, "error": null, "id": "8km4yms4rhrm40chj45tpffr3w", "input": { "model": "dev", "prompt": "linnea teal hair animation expression sheet showing a variety of emotions", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 40242\nPrompt: linnea teal hair animation expression sheet showing a variety of emotions\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 11.71s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.70it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.25it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.98it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.86it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.80it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.76it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.74it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.72it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.71it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.71it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.70it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.70it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.70it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.70it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.70it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.70it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.70it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.70it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.70it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.70it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.70it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.70it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.70it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.70it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.70it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.70it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.70it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.70it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.73it/s]", "metrics": { "predict_time": 19.76618219, "total_time": 20.510831 }, "output": [ "https://replicate.delivery/yhqm/1BP7UOsMJBrPGVzOvinlQPYvkFImlaQu91WYvIaPdbJRDr1E/out-0.webp" ], "started_at": "2024-08-26T23:35:13.068648Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/8km4yms4rhrm40chj45tpffr3w", "cancel": "https://api.replicate.com/v1/predictions/8km4yms4rhrm40chj45tpffr3w/cancel" }, "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08" }
Generated inUsing seed: 40242 Prompt: linnea teal hair animation expression sheet showing a variety of emotions txt2img mode Using dev model Loaded LoRAs in 11.71s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.70it/s] 7%|▋ | 2/28 [00:00<00:06, 4.25it/s] 11%|█ | 3/28 [00:00<00:06, 3.98it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.86it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.80it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.76it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.74it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.72it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.71it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.71it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.70it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.70it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.70it/s] 50%|█████ | 14/28 [00:03<00:03, 3.70it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.70it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.70it/s] 61%|██████ | 17/28 [00:04<00:02, 3.70it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.70it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.70it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.70it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.70it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.70it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.70it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.70it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.70it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.70it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.70it/s] 100%|██████████| 28/28 [00:07<00:00, 3.70it/s] 100%|██████████| 28/28 [00:07<00:00, 3.73it/s]
Prediction
aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08IDb9xsw0exwhrm60chj45v51mjvrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- linnea teal hair running, full body
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "linnea teal hair running, full body", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", { input: { model: "dev", prompt: "linnea teal hair running, full body", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", input={ "model": "dev", "prompt": "linnea teal hair running, full body", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", "input": { "model": "dev", "prompt": "linnea teal hair running, full body", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-26T23:36:21.139516Z", "created_at": "2024-08-26T23:35:59.716000Z", "data_removed": false, "error": null, "id": "b9xsw0exwhrm60chj45v51mjvr", "input": { "model": "dev", "prompt": "linnea teal hair running, full body", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 19328\nPrompt: linnea teal hair running, full body\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 12.32s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.67it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.23it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.95it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.69it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.68it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.66it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.65it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.65it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.65it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.65it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.65it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.65it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.65it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.65it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.65it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.65it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.68it/s]", "metrics": { "predict_time": 20.462929594, "total_time": 21.423516 }, "output": [ "https://replicate.delivery/yhqm/PQSbHe7Q7dU3IyyQNJfEWVlPaIzDV0ovVgVfFzjj4otobYtmA/out-0.webp" ], "started_at": "2024-08-26T23:36:00.676586Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/b9xsw0exwhrm60chj45v51mjvr", "cancel": "https://api.replicate.com/v1/predictions/b9xsw0exwhrm60chj45v51mjvr/cancel" }, "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08" }
Generated inUsing seed: 19328 Prompt: linnea teal hair running, full body txt2img mode Using dev model Loaded LoRAs in 12.32s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.67it/s] 7%|▋ | 2/28 [00:00<00:06, 4.23it/s] 11%|█ | 3/28 [00:00<00:06, 3.95it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.69it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.68it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s] 50%|█████ | 14/28 [00:03<00:03, 3.66it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.65it/s] 61%|██████ | 17/28 [00:04<00:03, 3.65it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.65it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.65it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.65it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.65it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.65it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.65it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.65it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.65it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s] 100%|██████████| 28/28 [00:07<00:00, 3.65it/s] 100%|██████████| 28/28 [00:07<00:00, 3.68it/s]
Prediction
aramintak/linnea-flux-beta:0d3422c810c624ad8082076d1f06da7d7aa1342b590f399376634e18d5039b6bIDd50s5wr071rj00cj097r37wsa0StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- model
- dev
- prompt
- linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/linnea-flux-beta:0d3422c810c624ad8082076d1f06da7d7aa1342b590f399376634e18d5039b6b", { input: { model: "dev", prompt: "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/linnea-flux-beta:0d3422c810c624ad8082076d1f06da7d7aa1342b590f399376634e18d5039b6b", input={ "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "0d3422c810c624ad8082076d1f06da7d7aa1342b590f399376634e18d5039b6b", "input": { "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-17T23:26:46.379504Z", "created_at": "2024-09-17T23:26:24.824000Z", "data_removed": false, "error": null, "id": "d50s5wr071rj00cj097r37wsa0", "input": { "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 61478\nPrompt: linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants\n[!] txt2img mode\nUsing dev model\nfree=3299390324736\nDownloading weights\n2024-09-17T23:26:24Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1d0ws9wx/weights url=https://replicate.delivery/yhqm/ZKolG3xatrasExILOo56VHtJ6ZclbZKRm9FscJTLDtRmXO3E/trained_model.tar\n2024-09-17T23:26:28Z | INFO | [ Complete ] dest=/tmp/tmp1d0ws9wx/weights size=\"279 MB\" total_elapsed=3.183s url=https://replicate.delivery/yhqm/ZKolG3xatrasExILOo56VHtJ6ZclbZKRm9FscJTLDtRmXO3E/trained_model.tar\nDownloaded weights in 3.22s\nLoaded LoRAs in 5.47s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:14, 1.83it/s]\n 7%|▋ | 2/28 [00:00<00:12, 2.08it/s]\n 11%|█ | 3/28 [00:01<00:12, 1.96it/s]\n 14%|█▍ | 4/28 [00:02<00:12, 1.90it/s]\n 18%|█▊ | 5/28 [00:02<00:12, 1.87it/s]\n 21%|██▏ | 6/28 [00:03<00:11, 1.86it/s]\n 25%|██▌ | 7/28 [00:03<00:11, 1.84it/s]\n 29%|██▊ | 8/28 [00:04<00:10, 1.84it/s]\n 32%|███▏ | 9/28 [00:04<00:10, 1.83it/s]\n 36%|███▌ | 10/28 [00:05<00:09, 1.83it/s]\n 39%|███▉ | 11/28 [00:05<00:09, 1.83it/s]\n 43%|████▎ | 12/28 [00:06<00:08, 1.83it/s]\n 46%|████▋ | 13/28 [00:07<00:08, 1.83it/s]\n 50%|█████ | 14/28 [00:07<00:07, 1.83it/s]\n 54%|█████▎ | 15/28 [00:08<00:07, 1.82it/s]\n 57%|█████▋ | 16/28 [00:08<00:06, 1.82it/s]\n 61%|██████ | 17/28 [00:09<00:06, 1.82it/s]\n 64%|██████▍ | 18/28 [00:09<00:05, 1.82it/s]\n 68%|██████▊ | 19/28 [00:10<00:04, 1.82it/s]\n 71%|███████▏ | 20/28 [00:10<00:04, 1.82it/s]\n 75%|███████▌ | 21/28 [00:11<00:03, 1.82it/s]\n 79%|███████▊ | 22/28 [00:11<00:03, 1.82it/s]\n 82%|████████▏ | 23/28 [00:12<00:02, 1.82it/s]\n 86%|████████▌ | 24/28 [00:13<00:02, 1.82it/s]\n 89%|████████▉ | 25/28 [00:13<00:01, 1.82it/s]\n 93%|█████████▎| 26/28 [00:14<00:01, 1.82it/s]\n 96%|█████████▋| 27/28 [00:14<00:00, 1.82it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.82it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.84it/s]", "metrics": { "predict_time": 21.54445376, "total_time": 21.555504 }, "output": [ "https://replicate.delivery/yhqm/kBBrWpohsE7TIlMjUrZHIdf9JDY50f3pC57pQD42Xqw2I8dTA/out-0.webp" ], "started_at": "2024-09-17T23:26:24.835051Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/d50s5wr071rj00cj097r37wsa0", "cancel": "https://api.replicate.com/v1/predictions/d50s5wr071rj00cj097r37wsa0/cancel" }, "version": "0d3422c810c624ad8082076d1f06da7d7aa1342b590f399376634e18d5039b6b" }
Generated inUsing seed: 61478 Prompt: linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants [!] txt2img mode Using dev model free=3299390324736 Downloading weights 2024-09-17T23:26:24Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1d0ws9wx/weights url=https://replicate.delivery/yhqm/ZKolG3xatrasExILOo56VHtJ6ZclbZKRm9FscJTLDtRmXO3E/trained_model.tar 2024-09-17T23:26:28Z | INFO | [ Complete ] dest=/tmp/tmp1d0ws9wx/weights size="279 MB" total_elapsed=3.183s url=https://replicate.delivery/yhqm/ZKolG3xatrasExILOo56VHtJ6ZclbZKRm9FscJTLDtRmXO3E/trained_model.tar Downloaded weights in 3.22s Loaded LoRAs in 5.47s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:14, 1.83it/s] 7%|▋ | 2/28 [00:00<00:12, 2.08it/s] 11%|█ | 3/28 [00:01<00:12, 1.96it/s] 14%|█▍ | 4/28 [00:02<00:12, 1.90it/s] 18%|█▊ | 5/28 [00:02<00:12, 1.87it/s] 21%|██▏ | 6/28 [00:03<00:11, 1.86it/s] 25%|██▌ | 7/28 [00:03<00:11, 1.84it/s] 29%|██▊ | 8/28 [00:04<00:10, 1.84it/s] 32%|███▏ | 9/28 [00:04<00:10, 1.83it/s] 36%|███▌ | 10/28 [00:05<00:09, 1.83it/s] 39%|███▉ | 11/28 [00:05<00:09, 1.83it/s] 43%|████▎ | 12/28 [00:06<00:08, 1.83it/s] 46%|████▋ | 13/28 [00:07<00:08, 1.83it/s] 50%|█████ | 14/28 [00:07<00:07, 1.83it/s] 54%|█████▎ | 15/28 [00:08<00:07, 1.82it/s] 57%|█████▋ | 16/28 [00:08<00:06, 1.82it/s] 61%|██████ | 17/28 [00:09<00:06, 1.82it/s] 64%|██████▍ | 18/28 [00:09<00:05, 1.82it/s] 68%|██████▊ | 19/28 [00:10<00:04, 1.82it/s] 71%|███████▏ | 20/28 [00:10<00:04, 1.82it/s] 75%|███████▌ | 21/28 [00:11<00:03, 1.82it/s] 79%|███████▊ | 22/28 [00:11<00:03, 1.82it/s] 82%|████████▏ | 23/28 [00:12<00:02, 1.82it/s] 86%|████████▌ | 24/28 [00:13<00:02, 1.82it/s] 89%|████████▉ | 25/28 [00:13<00:01, 1.82it/s] 93%|█████████▎| 26/28 [00:14<00:01, 1.82it/s] 96%|█████████▋| 27/28 [00:14<00:00, 1.82it/s] 100%|██████████| 28/28 [00:15<00:00, 1.82it/s] 100%|██████████| 28/28 [00:15<00:00, 1.84it/s]
Prediction
aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08ID9rg5k4eedhrj60cj0998wg2pcwStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- model
- dev
- prompt
- linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", { input: { model: "dev", prompt: "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", input={ "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", "input": { "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-17T23:30:55.555635Z", "created_at": "2024-09-17T23:30:34.220000Z", "data_removed": false, "error": null, "id": "9rg5k4eedhrj60cj0998wg2pcw", "input": { "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 35921\nPrompt: linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants\n[!] txt2img mode\nUsing dev model\nfree=3986450477056\nDownloading weights\n2024-09-17T23:30:35Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp8dosoraq/weights url=https://replicate.delivery/yhqm/tteb0gePizs0VU8kp2tMmOENmAHLE2eTLGanPJ7ctgm4CXtmA/trained_model.tar\n2024-09-17T23:30:36Z | INFO | [ Complete ] dest=/tmp/tmp8dosoraq/weights size=\"344 MB\" total_elapsed=1.591s url=https://replicate.delivery/yhqm/tteb0gePizs0VU8kp2tMmOENmAHLE2eTLGanPJ7ctgm4CXtmA/trained_model.tar\nDownloaded weights in 1.63s\nLoaded LoRAs in 4.60s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:14, 1.84it/s]\n 7%|▋ | 2/28 [00:00<00:12, 2.12it/s]\n 11%|█ | 3/28 [00:01<00:12, 1.98it/s]\n 14%|█▍ | 4/28 [00:02<00:12, 1.92it/s]\n 18%|█▊ | 5/28 [00:02<00:12, 1.89it/s]\n 21%|██▏ | 6/28 [00:03<00:11, 1.87it/s]\n 25%|██▌ | 7/28 [00:03<00:11, 1.86it/s]\n 29%|██▊ | 8/28 [00:04<00:10, 1.85it/s]\n 32%|███▏ | 9/28 [00:04<00:10, 1.85it/s]\n 36%|███▌ | 10/28 [00:05<00:09, 1.84it/s]\n 39%|███▉ | 11/28 [00:05<00:09, 1.84it/s]\n 43%|████▎ | 12/28 [00:06<00:08, 1.84it/s]\n 46%|████▋ | 13/28 [00:06<00:08, 1.84it/s]\n 50%|█████ | 14/28 [00:07<00:07, 1.84it/s]\n 54%|█████▎ | 15/28 [00:08<00:07, 1.84it/s]\n 57%|█████▋ | 16/28 [00:08<00:06, 1.84it/s]\n 61%|██████ | 17/28 [00:09<00:05, 1.84it/s]\n 64%|██████▍ | 18/28 [00:09<00:05, 1.84it/s]\n 68%|██████▊ | 19/28 [00:10<00:04, 1.84it/s]\n 71%|███████▏ | 20/28 [00:10<00:04, 1.84it/s]\n 75%|███████▌ | 21/28 [00:11<00:03, 1.84it/s]\n 79%|███████▊ | 22/28 [00:11<00:03, 1.84it/s]\n 82%|████████▏ | 23/28 [00:12<00:02, 1.84it/s]\n 86%|████████▌ | 24/28 [00:12<00:02, 1.84it/s]\n 89%|████████▉ | 25/28 [00:13<00:01, 1.84it/s]\n 93%|█████████▎| 26/28 [00:14<00:01, 1.84it/s]\n 96%|█████████▋| 27/28 [00:14<00:00, 1.84it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.84it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.85it/s]", "metrics": { "predict_time": 20.506494977, "total_time": 21.335635 }, "output": [ "https://replicate.delivery/yhqm/yMfLapRTmTwMPSCDjHRjHa8X3fwf3nealg2XK2fWCeV0LDfuJA/out-0.webp" ], "started_at": "2024-09-17T23:30:35.049140Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/9rg5k4eedhrj60cj0998wg2pcw", "cancel": "https://api.replicate.com/v1/predictions/9rg5k4eedhrj60cj0998wg2pcw/cancel" }, "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08" }
Generated inUsing seed: 35921 Prompt: linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants [!] txt2img mode Using dev model free=3986450477056 Downloading weights 2024-09-17T23:30:35Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp8dosoraq/weights url=https://replicate.delivery/yhqm/tteb0gePizs0VU8kp2tMmOENmAHLE2eTLGanPJ7ctgm4CXtmA/trained_model.tar 2024-09-17T23:30:36Z | INFO | [ Complete ] dest=/tmp/tmp8dosoraq/weights size="344 MB" total_elapsed=1.591s url=https://replicate.delivery/yhqm/tteb0gePizs0VU8kp2tMmOENmAHLE2eTLGanPJ7ctgm4CXtmA/trained_model.tar Downloaded weights in 1.63s Loaded LoRAs in 4.60s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:14, 1.84it/s] 7%|▋ | 2/28 [00:00<00:12, 2.12it/s] 11%|█ | 3/28 [00:01<00:12, 1.98it/s] 14%|█▍ | 4/28 [00:02<00:12, 1.92it/s] 18%|█▊ | 5/28 [00:02<00:12, 1.89it/s] 21%|██▏ | 6/28 [00:03<00:11, 1.87it/s] 25%|██▌ | 7/28 [00:03<00:11, 1.86it/s] 29%|██▊ | 8/28 [00:04<00:10, 1.85it/s] 32%|███▏ | 9/28 [00:04<00:10, 1.85it/s] 36%|███▌ | 10/28 [00:05<00:09, 1.84it/s] 39%|███▉ | 11/28 [00:05<00:09, 1.84it/s] 43%|████▎ | 12/28 [00:06<00:08, 1.84it/s] 46%|████▋ | 13/28 [00:06<00:08, 1.84it/s] 50%|█████ | 14/28 [00:07<00:07, 1.84it/s] 54%|█████▎ | 15/28 [00:08<00:07, 1.84it/s] 57%|█████▋ | 16/28 [00:08<00:06, 1.84it/s] 61%|██████ | 17/28 [00:09<00:05, 1.84it/s] 64%|██████▍ | 18/28 [00:09<00:05, 1.84it/s] 68%|██████▊ | 19/28 [00:10<00:04, 1.84it/s] 71%|███████▏ | 20/28 [00:10<00:04, 1.84it/s] 75%|███████▌ | 21/28 [00:11<00:03, 1.84it/s] 79%|███████▊ | 22/28 [00:11<00:03, 1.84it/s] 82%|████████▏ | 23/28 [00:12<00:02, 1.84it/s] 86%|████████▌ | 24/28 [00:12<00:02, 1.84it/s] 89%|████████▉ | 25/28 [00:13<00:01, 1.84it/s] 93%|█████████▎| 26/28 [00:14<00:01, 1.84it/s] 96%|█████████▋| 27/28 [00:14<00:00, 1.84it/s] 100%|██████████| 28/28 [00:15<00:00, 1.84it/s] 100%|██████████| 28/28 [00:15<00:00, 1.85it/s]
Prediction
aramintak/linnea-flux-beta:f850fa884fb3c6b3326f06a8628e7bf5e4c470213319788eaf8fe7c93c2b5cccIDr087f2kvhnrj40cj098rg53j2rStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- model
- dev
- prompt
- linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/linnea-flux-beta:f850fa884fb3c6b3326f06a8628e7bf5e4c470213319788eaf8fe7c93c2b5ccc", { input: { model: "dev", prompt: "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/linnea-flux-beta:f850fa884fb3c6b3326f06a8628e7bf5e4c470213319788eaf8fe7c93c2b5ccc", input={ "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "f850fa884fb3c6b3326f06a8628e7bf5e4c470213319788eaf8fe7c93c2b5ccc", "input": { "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-17T23:29:26.073810Z", "created_at": "2024-09-17T23:29:07.469000Z", "data_removed": false, "error": null, "id": "r087f2kvhnrj40cj098rg53j2r", "input": { "model": "dev", "prompt": "linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 10494\nPrompt: linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 2.72s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:14, 1.84it/s]\n 7%|▋ | 2/28 [00:00<00:12, 2.12it/s]\n 11%|█ | 3/28 [00:01<00:12, 1.98it/s]\n 14%|█▍ | 4/28 [00:02<00:12, 1.92it/s]\n 18%|█▊ | 5/28 [00:02<00:12, 1.88it/s]\n 21%|██▏ | 6/28 [00:03<00:11, 1.87it/s]\n 25%|██▌ | 7/28 [00:03<00:11, 1.85it/s]\n 29%|██▊ | 8/28 [00:04<00:10, 1.84it/s]\n 32%|███▏ | 9/28 [00:04<00:10, 1.84it/s]\n 36%|███▌ | 10/28 [00:05<00:09, 1.84it/s]\n 39%|███▉ | 11/28 [00:05<00:09, 1.84it/s]\n 43%|████▎ | 12/28 [00:06<00:08, 1.83it/s]\n 46%|████▋ | 13/28 [00:06<00:08, 1.83it/s]\n 50%|█████ | 14/28 [00:07<00:07, 1.83it/s]\n 54%|█████▎ | 15/28 [00:08<00:07, 1.83it/s]\n 57%|█████▋ | 16/28 [00:08<00:06, 1.83it/s]\n 61%|██████ | 17/28 [00:09<00:06, 1.83it/s]\n 64%|██████▍ | 18/28 [00:09<00:05, 1.83it/s]\n 68%|██████▊ | 19/28 [00:10<00:04, 1.83it/s]\n 71%|███████▏ | 20/28 [00:10<00:04, 1.83it/s]\n 75%|███████▌ | 21/28 [00:11<00:03, 1.83it/s]\n 79%|███████▊ | 22/28 [00:11<00:03, 1.83it/s]\n 82%|████████▏ | 23/28 [00:12<00:02, 1.83it/s]\n 86%|████████▌ | 24/28 [00:12<00:02, 1.83it/s]\n 89%|████████▉ | 25/28 [00:13<00:01, 1.83it/s]\n 93%|█████████▎| 26/28 [00:14<00:01, 1.83it/s]\n 96%|█████████▋| 27/28 [00:14<00:00, 1.83it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.83it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.84it/s]", "metrics": { "predict_time": 18.59363302, "total_time": 18.60481 }, "output": [ "https://replicate.delivery/yhqm/1r7fZWXFOWTOVaYdy2ntBjm8HLO4jfDYDpX8Dae9NDarW47mA/out-0.webp" ], "started_at": "2024-09-17T23:29:07.480177Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/r087f2kvhnrj40cj098rg53j2r", "cancel": "https://api.replicate.com/v1/predictions/r087f2kvhnrj40cj098rg53j2r/cancel" }, "version": "f850fa884fb3c6b3326f06a8628e7bf5e4c470213319788eaf8fe7c93c2b5ccc" }
Generated inUsing seed: 10494 Prompt: linnea teal hair sitting in a gaming chair, soft illustration style, gray striped linen pants [!] txt2img mode Using dev model Loaded LoRAs in 2.72s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:14, 1.84it/s] 7%|▋ | 2/28 [00:00<00:12, 2.12it/s] 11%|█ | 3/28 [00:01<00:12, 1.98it/s] 14%|█▍ | 4/28 [00:02<00:12, 1.92it/s] 18%|█▊ | 5/28 [00:02<00:12, 1.88it/s] 21%|██▏ | 6/28 [00:03<00:11, 1.87it/s] 25%|██▌ | 7/28 [00:03<00:11, 1.85it/s] 29%|██▊ | 8/28 [00:04<00:10, 1.84it/s] 32%|███▏ | 9/28 [00:04<00:10, 1.84it/s] 36%|███▌ | 10/28 [00:05<00:09, 1.84it/s] 39%|███▉ | 11/28 [00:05<00:09, 1.84it/s] 43%|████▎ | 12/28 [00:06<00:08, 1.83it/s] 46%|████▋ | 13/28 [00:06<00:08, 1.83it/s] 50%|█████ | 14/28 [00:07<00:07, 1.83it/s] 54%|█████▎ | 15/28 [00:08<00:07, 1.83it/s] 57%|█████▋ | 16/28 [00:08<00:06, 1.83it/s] 61%|██████ | 17/28 [00:09<00:06, 1.83it/s] 64%|██████▍ | 18/28 [00:09<00:05, 1.83it/s] 68%|██████▊ | 19/28 [00:10<00:04, 1.83it/s] 71%|███████▏ | 20/28 [00:10<00:04, 1.83it/s] 75%|███████▌ | 21/28 [00:11<00:03, 1.83it/s] 79%|███████▊ | 22/28 [00:11<00:03, 1.83it/s] 82%|████████▏ | 23/28 [00:12<00:02, 1.83it/s] 86%|████████▌ | 24/28 [00:12<00:02, 1.83it/s] 89%|████████▉ | 25/28 [00:13<00:01, 1.83it/s] 93%|█████████▎| 26/28 [00:14<00:01, 1.83it/s] 96%|█████████▋| 27/28 [00:14<00:00, 1.83it/s] 100%|██████████| 28/28 [00:15<00:00, 1.83it/s] 100%|██████████| 28/28 [00:15<00:00, 1.84it/s]
Prediction
aramintak/linnea-flux-beta:16dbb5dc030808ce444285a24979a9f7929a04442db5d438d32b857a7239cc78IDhrntfmv3v1rj60cj09ft98d8jgStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- model
- dev
- prompt
- linnea teal hair, baggy shirt, tired, soft illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "linnea teal hair, baggy shirt, tired, soft illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/linnea-flux-beta:16dbb5dc030808ce444285a24979a9f7929a04442db5d438d32b857a7239cc78", { input: { model: "dev", prompt: "linnea teal hair, baggy shirt, tired, soft illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/linnea-flux-beta:16dbb5dc030808ce444285a24979a9f7929a04442db5d438d32b857a7239cc78", input={ "model": "dev", "prompt": "linnea teal hair, baggy shirt, tired, soft illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "16dbb5dc030808ce444285a24979a9f7929a04442db5d438d32b857a7239cc78", "input": { "model": "dev", "prompt": "linnea teal hair, baggy shirt, tired, soft illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-17T23:44:37.640955Z", "created_at": "2024-09-17T23:44:18.904000Z", "data_removed": false, "error": null, "id": "hrntfmv3v1rj60cj09ft98d8jg", "input": { "model": "dev", "prompt": "linnea teal hair, baggy shirt, tired, soft illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 43940\nPrompt: linnea teal hair, baggy shirt, tired, soft illustration style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 2.82s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:14, 1.84it/s]\n 7%|▋ | 2/28 [00:00<00:12, 2.11it/s]\n 11%|█ | 3/28 [00:01<00:12, 1.98it/s]\n 14%|█▍ | 4/28 [00:02<00:12, 1.92it/s]\n 18%|█▊ | 5/28 [00:02<00:12, 1.88it/s]\n 21%|██▏ | 6/28 [00:03<00:11, 1.87it/s]\n 25%|██▌ | 7/28 [00:03<00:11, 1.85it/s]\n 29%|██▊ | 8/28 [00:04<00:10, 1.84it/s]\n 32%|███▏ | 9/28 [00:04<00:10, 1.84it/s]\n 36%|███▌ | 10/28 [00:05<00:09, 1.83it/s]\n 39%|███▉ | 11/28 [00:05<00:09, 1.83it/s]\n 43%|████▎ | 12/28 [00:06<00:08, 1.83it/s]\n 46%|████▋ | 13/28 [00:06<00:08, 1.82it/s]\n 50%|█████ | 14/28 [00:07<00:07, 1.82it/s]\n 54%|█████▎ | 15/28 [00:08<00:07, 1.82it/s]\n 57%|█████▋ | 16/28 [00:08<00:06, 1.82it/s]\n 61%|██████ | 17/28 [00:09<00:06, 1.82it/s]\n 64%|██████▍ | 18/28 [00:09<00:05, 1.82it/s]\n 68%|██████▊ | 19/28 [00:10<00:04, 1.82it/s]\n 71%|███████▏ | 20/28 [00:10<00:04, 1.82it/s]\n 75%|███████▌ | 21/28 [00:11<00:03, 1.82it/s]\n 79%|███████▊ | 22/28 [00:11<00:03, 1.82it/s]\n 82%|████████▏ | 23/28 [00:12<00:02, 1.82it/s]\n 86%|████████▌ | 24/28 [00:13<00:02, 1.82it/s]\n 89%|████████▉ | 25/28 [00:13<00:01, 1.82it/s]\n 93%|█████████▎| 26/28 [00:14<00:01, 1.82it/s]\n 96%|█████████▋| 27/28 [00:14<00:00, 1.82it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.82it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.84it/s]", "metrics": { "predict_time": 18.725533736, "total_time": 18.736955 }, "output": [ "https://replicate.delivery/yhqm/TGctABuG5gaZMlpf2xQINmphDI3beVhFGrfNjSpeUarWmx3NB/out-0.webp" ], "started_at": "2024-09-17T23:44:18.915421Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/hrntfmv3v1rj60cj09ft98d8jg", "cancel": "https://api.replicate.com/v1/predictions/hrntfmv3v1rj60cj09ft98d8jg/cancel" }, "version": "16dbb5dc030808ce444285a24979a9f7929a04442db5d438d32b857a7239cc78" }
Generated inUsing seed: 43940 Prompt: linnea teal hair, baggy shirt, tired, soft illustration style [!] txt2img mode Using dev model Loaded LoRAs in 2.82s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:14, 1.84it/s] 7%|▋ | 2/28 [00:00<00:12, 2.11it/s] 11%|█ | 3/28 [00:01<00:12, 1.98it/s] 14%|█▍ | 4/28 [00:02<00:12, 1.92it/s] 18%|█▊ | 5/28 [00:02<00:12, 1.88it/s] 21%|██▏ | 6/28 [00:03<00:11, 1.87it/s] 25%|██▌ | 7/28 [00:03<00:11, 1.85it/s] 29%|██▊ | 8/28 [00:04<00:10, 1.84it/s] 32%|███▏ | 9/28 [00:04<00:10, 1.84it/s] 36%|███▌ | 10/28 [00:05<00:09, 1.83it/s] 39%|███▉ | 11/28 [00:05<00:09, 1.83it/s] 43%|████▎ | 12/28 [00:06<00:08, 1.83it/s] 46%|████▋ | 13/28 [00:06<00:08, 1.82it/s] 50%|█████ | 14/28 [00:07<00:07, 1.82it/s] 54%|█████▎ | 15/28 [00:08<00:07, 1.82it/s] 57%|█████▋ | 16/28 [00:08<00:06, 1.82it/s] 61%|██████ | 17/28 [00:09<00:06, 1.82it/s] 64%|██████▍ | 18/28 [00:09<00:05, 1.82it/s] 68%|██████▊ | 19/28 [00:10<00:04, 1.82it/s] 71%|███████▏ | 20/28 [00:10<00:04, 1.82it/s] 75%|███████▌ | 21/28 [00:11<00:03, 1.82it/s] 79%|███████▊ | 22/28 [00:11<00:03, 1.82it/s] 82%|████████▏ | 23/28 [00:12<00:02, 1.82it/s] 86%|████████▌ | 24/28 [00:13<00:02, 1.82it/s] 89%|████████▉ | 25/28 [00:13<00:01, 1.82it/s] 93%|█████████▎| 26/28 [00:14<00:01, 1.82it/s] 96%|█████████▋| 27/28 [00:14<00:00, 1.82it/s] 100%|██████████| 28/28 [00:15<00:00, 1.82it/s] 100%|██████████| 28/28 [00:15<00:00, 1.84it/s]
Prediction
aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08ID97p4shb7s5rj00cj09svcrd8xmStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- model
- dev
- prompt
- open eyes, tired ,linnea teal hair, baggy shirt, closed mouth, soft illustration style, facing forward
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 2:3
- output_format
- webp
- guidance_scale
- 3.25
- output_quality
- 90
- prompt_strength
- 0.7
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "image": "https://replicate.delivery/pbxt/LdqB3S5F3wDfbzX4isSfpt41GZfr9a80akTo5uUxiL9hjXlm/out-1%20%2852%29.webp", "model": "dev", "prompt": "open eyes, tired ,linnea teal hair, baggy shirt, closed mouth, soft illustration style, facing forward", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.25, "output_quality": 90, "prompt_strength": 0.7, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", { input: { image: "https://replicate.delivery/pbxt/LdqB3S5F3wDfbzX4isSfpt41GZfr9a80akTo5uUxiL9hjXlm/out-1%20%2852%29.webp", model: "dev", prompt: "open eyes, tired ,linnea teal hair, baggy shirt, closed mouth, soft illustration style, facing forward", lora_scale: 1, num_outputs: 4, aspect_ratio: "2:3", output_format: "webp", guidance_scale: 3.25, output_quality: 90, prompt_strength: 0.7, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/linnea-flux-beta:7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", input={ "image": "https://replicate.delivery/pbxt/LdqB3S5F3wDfbzX4isSfpt41GZfr9a80akTo5uUxiL9hjXlm/out-1%20%2852%29.webp", "model": "dev", "prompt": "open eyes, tired ,linnea teal hair, baggy shirt, closed mouth, soft illustration style, facing forward", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.25, "output_quality": 90, "prompt_strength": 0.7, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/linnea-flux-beta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08", "input": { "image": "https://replicate.delivery/pbxt/LdqB3S5F3wDfbzX4isSfpt41GZfr9a80akTo5uUxiL9hjXlm/out-1%20%2852%29.webp", "model": "dev", "prompt": "open eyes, tired ,linnea teal hair, baggy shirt, closed mouth, soft illustration style, facing forward", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.25, "output_quality": 90, "prompt_strength": 0.7, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-18T00:06:58.769314Z", "created_at": "2024-09-18T00:06:10.633000Z", "data_removed": false, "error": null, "id": "97p4shb7s5rj00cj09svcrd8xm", "input": { "image": "https://replicate.delivery/pbxt/LdqB3S5F3wDfbzX4isSfpt41GZfr9a80akTo5uUxiL9hjXlm/out-1%20%2852%29.webp", "model": "dev", "prompt": "open eyes, tired ,linnea teal hair, baggy shirt, closed mouth, soft illustration style, facing forward", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.25, "output_quality": 90, "prompt_strength": 0.7, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 3935\nPrompt: open eyes, tired ,linnea teal hair, baggy shirt, closed mouth, soft illustration style, facing forward\n[!] Resizing input image from 832x1216 to 832x1216\n[!] img2img mode\n[!] Using dev model for img2img\nUsing dev model\nfree=2856148209664\nDownloading weights\n2024-09-18T00:06:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpf50gaxz2/weights url=https://replicate.delivery/yhqm/tteb0gePizs0VU8kp2tMmOENmAHLE2eTLGanPJ7ctgm4CXtmA/trained_model.tar\n2024-09-18T00:06:12Z | INFO | [ Complete ] dest=/tmp/tmpf50gaxz2/weights size=\"344 MB\" total_elapsed=1.474s url=https://replicate.delivery/yhqm/tteb0gePizs0VU8kp2tMmOENmAHLE2eTLGanPJ7ctgm4CXtmA/trained_model.tar\nDownloaded weights in 1.52s\nLoaded LoRAs in 4.26s\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:01<00:29, 1.57s/it]\n 10%|█ | 2/20 [00:03<00:33, 1.86s/it]\n 15%|█▌ | 3/20 [00:05<00:33, 1.95s/it]\n 20%|██ | 4/20 [00:07<00:31, 2.00s/it]\n 25%|██▌ | 5/20 [00:09<00:30, 2.02s/it]\n 30%|███ | 6/20 [00:11<00:28, 2.04s/it]\n 35%|███▌ | 7/20 [00:13<00:26, 2.05s/it]\n 40%|████ | 8/20 [00:16<00:24, 2.05s/it]\n 45%|████▌ | 9/20 [00:18<00:22, 2.06s/it]\n 50%|█████ | 10/20 [00:20<00:20, 2.06s/it]\n 55%|█████▌ | 11/20 [00:22<00:18, 2.06s/it]\n 60%|██████ | 12/20 [00:24<00:16, 2.07s/it]\n 65%|██████▌ | 13/20 [00:26<00:14, 2.07s/it]\n 70%|███████ | 14/20 [00:28<00:12, 2.07s/it]\n 75%|███████▌ | 15/20 [00:30<00:10, 2.07s/it]\n 80%|████████ | 16/20 [00:32<00:08, 2.07s/it]\n 85%|████████▌ | 17/20 [00:34<00:06, 2.07s/it]\n 90%|█████████ | 18/20 [00:36<00:04, 2.07s/it]\n 95%|█████████▌| 19/20 [00:38<00:02, 2.07s/it]\n100%|██████████| 20/20 [00:40<00:00, 2.07s/it]\n100%|██████████| 20/20 [00:40<00:00, 2.04s/it]", "metrics": { "predict_time": 48.126454667, "total_time": 48.136314 }, "output": [ "https://replicate.delivery/yhqm/RZjE9N0mfoxefpKz3YElmj6kfu56w26ucuSa5Fx9tR8J6y3NB/out-0.webp", "https://replicate.delivery/yhqm/XarFUcJNHQYfDywwj0fers4vlBydOyrItehp6YPHBfAW0lvbC/out-1.webp", "https://replicate.delivery/yhqm/VdEpQw1viHYPG1BTLGkePS3FdJSI00eTq4wPFN9e6ODFd57mA/out-2.webp", "https://replicate.delivery/yhqm/glK5fZOXLa2MXadDxMErf5kCSK19FbReO4albcEIufSL6y3NB/out-3.webp" ], "started_at": "2024-09-18T00:06:10.642860Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/97p4shb7s5rj00cj09svcrd8xm", "cancel": "https://api.replicate.com/v1/predictions/97p4shb7s5rj00cj09svcrd8xm/cancel" }, "version": "7d86be5fa7e383f1b1e867ebd01d650159b8881cc0e0eb4e67b82161eba9fd08" }
Generated inUsing seed: 3935 Prompt: open eyes, tired ,linnea teal hair, baggy shirt, closed mouth, soft illustration style, facing forward [!] Resizing input image from 832x1216 to 832x1216 [!] img2img mode [!] Using dev model for img2img Using dev model free=2856148209664 Downloading weights 2024-09-18T00:06:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpf50gaxz2/weights url=https://replicate.delivery/yhqm/tteb0gePizs0VU8kp2tMmOENmAHLE2eTLGanPJ7ctgm4CXtmA/trained_model.tar 2024-09-18T00:06:12Z | INFO | [ Complete ] dest=/tmp/tmpf50gaxz2/weights size="344 MB" total_elapsed=1.474s url=https://replicate.delivery/yhqm/tteb0gePizs0VU8kp2tMmOENmAHLE2eTLGanPJ7ctgm4CXtmA/trained_model.tar Downloaded weights in 1.52s Loaded LoRAs in 4.26s 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:01<00:29, 1.57s/it] 10%|█ | 2/20 [00:03<00:33, 1.86s/it] 15%|█▌ | 3/20 [00:05<00:33, 1.95s/it] 20%|██ | 4/20 [00:07<00:31, 2.00s/it] 25%|██▌ | 5/20 [00:09<00:30, 2.02s/it] 30%|███ | 6/20 [00:11<00:28, 2.04s/it] 35%|███▌ | 7/20 [00:13<00:26, 2.05s/it] 40%|████ | 8/20 [00:16<00:24, 2.05s/it] 45%|████▌ | 9/20 [00:18<00:22, 2.06s/it] 50%|█████ | 10/20 [00:20<00:20, 2.06s/it] 55%|█████▌ | 11/20 [00:22<00:18, 2.06s/it] 60%|██████ | 12/20 [00:24<00:16, 2.07s/it] 65%|██████▌ | 13/20 [00:26<00:14, 2.07s/it] 70%|███████ | 14/20 [00:28<00:12, 2.07s/it] 75%|███████▌ | 15/20 [00:30<00:10, 2.07s/it] 80%|████████ | 16/20 [00:32<00:08, 2.07s/it] 85%|████████▌ | 17/20 [00:34<00:06, 2.07s/it] 90%|█████████ | 18/20 [00:36<00:04, 2.07s/it] 95%|█████████▌| 19/20 [00:38<00:02, 2.07s/it] 100%|██████████| 20/20 [00:40<00:00, 2.07s/it] 100%|██████████| 20/20 [00:40<00:00, 2.04s/it]
Want to make some of these yourself?
Run this model